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A Proofs of Main Results

A.1 Max-Share Setup

A.1.1 Proof of Lemma 1

Proof. The lemma follows from:

δ′i

[∑
h∈H

Ψ̃hθθ
′Ψ̃′

h

]
δi =

∑
h∈H

δ′iΨ̃hθθ
′Ψ̃′

hδi =
∑
h∈H

θ′Ψ̃′
hδiδ

′
iΨ̃hθ = θ′

[∑
h∈H

Ψ̃′
hδiδ

′
iΨ̃h

]
θ,

where the second equality follows from the fact that δ′iΨ̃hθθ
′Ψ̃′

hδi is a product of two
scalar-valued quadratic terms.

A.1.2 Inner Product in the Frequency Domain Problem

Lemma 2. ⟨ψj, ψj′⟩freq ≡
∫
ω∈Ω ΓRe

1j (ω)Γ
Re
1j′(ω) + ΓIm

1j (ω)Γ
Im
1j′(ω)dω is an inner product

mapping RN × RN → R.

Proof. Denoting the hth element in ψj by ψh,j for h ∈ N and for a, b ∈ R, we have:

⟨aψj1 + bψj2 , ψj3⟩freq

=

∫
ω∈Ω

[
∞∑
h=0

(aψh,j1 + bψh,j2) cos (ωh)

][
∞∑
h=0

ψh,j3 cos (ωh)

]

+

[
−

∞∑
h=0

(aψh,j1 + bψh,j2) sin (ωh)

][
−

∞∑
h=0

ψh,j3 sin (ωh)

]
dω

= a

{∫
ω∈Ω

[
∞∑
h=0

ψh,j1 cos (ωh)

][
∞∑
h=0

ψh,j3 cos (ωh)

]

+

[
∞∑
h=0

ψh,j1 sin (ωh)

][
∞∑
h=0

ψh,j3 sin (ωh)

]
dω

}

+ b

{∫
ω∈Ω

[
∞∑
h=0

ψh,j2 cos (ωh)

][
∞∑
h=0

ψh,j3 cos (ωh)

]

+

[
∞∑
h=0

ψh,j2 sin (ωh)

][
∞∑
h=0

ψh,j3 sin (ωh)

]
dω

}
= a⟨ψj1 , ψj3⟩freq + b⟨ψj2 , ψj3⟩freq,
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where the second equality follows from the linearity of the integral and summation
operators and a rearrangement of terms. Thus, linearity is satisfied.

Conjugate symmetry is satisfied since:

⟨ψj1 , ψj2⟩freq =
∫
ω∈Ω

ΓRe
1j1

(ω)ΓRe
1j2

(ω) + ΓIm
1j1

(ω)ΓIm
1j2

(ω)dω

=

∫
ω∈Ω

ΓRe
1j2

(ω)ΓRe
1j1

(ω) + ΓIm
1j2

(ω)ΓIm
1j1

(ω)dω = ⟨ψj2 , ψj1⟩freq.

Positive-definiteness follows because for non-zero (over H) ψj1 ,

⟨ψj1 , ψj1⟩freq =
∫
ω∈Ω

[
∞∑
h=0

ψh,j1 cos (ωh)

]2
+

[
∞∑
h=0

ψh,j1 sin (ωh)

]2
dω > 0.

Since ⟨·, ·⟩freq satisfies conjugate symmetry, linearity in the first argument, and
positive-definiteness, it is an inner product operation mapping RN × RN → R.

A.1.3 Rareness of Non-unique Principal Eigenvectors

We now discuss the claim that it is rare for the max-share problem (9) to have a
non-unique solution, so that the assumptions of uniqueness and a simple eigenvalue
are relatively innocuous. The argument proceeds as follows.

First, note that the primitives in the max-share problem (the number of variables
N , the horizon set H, and the frequency set Ω) could constrain the matrices of interest
to be rank deficient. One example is when Ξ is rank one, in which case the solution
to (9) is unique and has a closed-form expression (see Section B.1.1).

If full-rank Gram matrices are not precluded by the primitives, the space of Gram
matrices with repeated eigenvalues is of measure zero within the space of all Gram
matrices under the standard Lebesgue measure. This is based on two facts: (i) the
space of N × N Gram matrices has a positive Lebesgue measure within the larger
space of N×N real symmetric matrices and (ii) for N ≥ 2, the space of real symmetric
matrices with at least one repeated eigenvalue has a codimension of 2 in the space of
real symmetric matrices and thus has a zero Lebesgue measure within that space.1

Consequently, the intersection of these two spaces, i.e., the space of Gram matrices
with at least one repeated eigenvalue, has Lebesgue measure zero and is thus rare.

1See, for instance, Exercise 1.3.10 in Tao (2012) for further details.
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Suppose instead that our focus is limited to the set of rank-deficient Gram matrices
with rank 2 ≤ k ≤ k̄ for some k̄ ≤ N − 1. Denote this set by Gsingular and consider
the partition into disjoint subsets: Gsingular = Grank=N−1 ∪Grank=N−2 ∪ · · · ∪Grank=2.
One could view Grank=k as a (Nk− k(k−1)

2
)-dimensional smooth manifold and define a

positive natural surface measure on it.2 Moreover, the additional condition of equality
between two non-zero eigenvalues imposes a non-trivial algebraic constraint on the
entries of the elements of Grank=k, thus defining a proper algebraic subvariety within
the manifold of Grank=k (see, e.g., Lax, 1998). One can then invoke a fundamental
result in algebraic geometry and measure theory that a proper subvariety of a manifold
has measure zero with respect to the natural surface measure of that manifold. As
such, the subset of rank-k Gram matrices with repeated non-zero eigenvalues has
measure zero with respect to the natural surface measure of the manifold of Grank=k.
An application of this argument to each Grank=k leads us to conclude that it is also
rare to have Gram matrices with repeated non-zero eigenvalues within Gsingular.

Together, the steps above imply that it is rare to have repeated non-zero eigen-
values in Ξ or non-unique principal eigenvectors associated with its largest (non-zero)
eigenvalue, and thus rare for the max-share problem (9) to have a non-unique solution.

A.2 Proof of Theorem 1

Denote the spectrum of an arbitrary diagonalizable matrix, X, by spec(X), the direct
sum of an ordered sequence of matrices, {Xi}i∈I , by

⊕
i∈I Xi, and the jth column of

the identity matrix, In, by δnj .
We first prove two auxiliary lemmas.

Lemma 3. Let Ξ :=
⊕G

g=1 Ξg be a block diagonal Hermitian matrix with G diagonal
blocks {Ξg}Gg=1, each of size ng × ng, then the following statements hold.

(a) spec(Ξ) =
⋃G

g=1 spec(Ξg) where spec(Ξg) ⊂ R.

(b) If vgj is an ng × 1 eigenvector of the block Ξg corresponding to the eigen-
value λgj ∈ spec(Ξg), then one can construct a n × 1 block-sparse eigen-
vector v of Ξ corresponding to the same eigenvalue λgj by padding (n − ng)

2Because the property of zero determinant imposes a non-trivial constraint on a polynomial
function of the entries of a real symmetric matrix, each subset Grank=k forms a proper algebraic
subvariety in the space of all N ×N real symmetric matrices and is thus of Lebesgue measure zero,
rendering it inappropriate to use the Lebesgue measure to describe the rareness of Gram matrices
with repeated non-zero eigenvalues within the set Grank=k itself.
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zeros to vg in all block components other than those corresponding to Ξg

as v = (0′
ng−×1, v

′
gj
,0′

ng+×1)
′, where n0 = nG+1 ≡ 0, ng− =

∑g−1
g′=0 ng′,

ng+ =
∑G+1

g′=g+1 ng′, and n =
∑G

g=1 ng = ng− + ng+ + 1.

(c) If there is a unique block Ξg0 such that its largest eigenvalue λmax(Ξg0) is strictly
larger than the largest eigenvalues of all other blocks Ξg for g ̸= g0, then the prin-
cipal eigenvector v0 of Ξ is block-sparse in the form of v0 = (0′

n
g−0

×1, v
′
g0
,0′

n
g+0

×1)
′,

where n0 = nG+1 ≡ 0, ng−0
=
∑g0−1

g′=0 ng′, ng+0
=
∑G+1

g′=g0+1 ng′, and vg0 is an
eigenvector of Ξg0 corresponding to λmax(Ξg0). Additionally, if λmax(Ξg0) is a
simple eigenvalue in spec(Ξg0) (of algebraic multiplicity 1), then v0 is the unique
principal eigenvector of Ξ.

Proof. Statement (a) follows because det(Ξ) =
∏G

g=1 det(Ξg) for block diagonal ma-
trices and the eigenvalues of a Hermitian matrix are real.

For (b), we verify Ξv = λgjv as follows:

Ξv =


(⊕g−1

g′=1 Ξg′

)
0ng−×1

Ξgvgj(⊕G
g′′=g+1 Ξg′′

)
0ng+×1

 =

 0ng−×1

λgjvgj
0ng+×1

 = λgj

 0ng−×1

vgj
0ng+×1

 = λgjv.

For (c), it follows from (a) that λmax(Ξg0) ∈ spec(Ξ) and λmax(Ξg0) = λmax(Ξ).
Moreover, (b) implies that v0 = (0′

ng−×1, v
′
g0
,0′

ng+×1)
′ is an eigenvector of Ξ cor-

responding to λmax(Ξg0). The uniqueness of v0 comes from the assumption that
λmax(Ξg0) is a simple eigenvalue in spec(Ξg0) and thus spec(Ξ).

Lemma 4. Let Ξ be an n × n Hermitian matrix. If δnj is an eigenvector of Ξ

for 1 ≤ j ≤ n, then Ξ = Ξ1:(j−1),1:(j−1) ⊕Ξj,j ⊕Ξ(j+1):n,(j+1):n and the eigenvalue
corresponding to δnj is Ξj,j.

Proof. First, Ξ is Hermitian, so it only has real eigenvalues. Second, by the definition
of an eigenvector, the jth column, Ξδnj , of Ξ must be a multiple of δnj , and so is the
jth row of Ξ by symmetry. As such, Ξ = Ξ1:(j−1),1:(j−1) ⊕Ξj,j ⊕Ξ(j+1):n,(j+1):n and
Ξδnj = Ξj,jδ

n
j .

Using Lemmas 3 and 4, we can prove Theorem 1.
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Proof. Sufficiency (⇒): If Ξ = Ξ1,1 ⊕Ξ2:N,2:N and Ξ1,1 > λmax(Ξ2:N,2:N), then
λmax(Ξ) = Ξ1,1 and has multiplicity 1 in spec(Ξ). By Lemma 3 (c), the principal
eigenvector of Ξ is δN1 and is unique.

Necessity (⇐): If δN1 is an eigenvector of Ξ, then by Lemma 4, Ξ = Ξ1,1 ⊕Ξ2:N,2:N

and the eigenvalue corresponding to δN1 is Ξ1,1. Now suppose that Ξ1,1 <

λmax(Ξ2:N,2:N), then by Lemma 3 (c), the principal eigenvector of Ξ cannot be
δN1 , which leads to a contradiction. Suppose that Ξ1,1 = λmax(Ξ2:N,2:N), then by
Lemma 3 (b), one can always construct another eigenvector that corresponds to
λmax(Ξ) = Ξ1,1 = λmax(Ξ2:N,2:N) and is orthogonal to δN1 , contradicting the unique-
ness of δN1 as the principal eigenvector of Ξ. In summary, it has to be the case that
the spectral gap of Ξ is strictly positive.

A.3 Deviations from Exact Identification

A.3.1 Proof of Theorem 2

Proof. By the linearity of the inner product ⟨·, ·⟩, we have, for any j,

⟨ψ∗, ψj⟩ =
N∑
k=1

θk⟨ψk, ψj⟩ = λmax(Ξ)θj, (A.1)

where the second equality follows from the Gramian structure of Ξj,k and the jth row
of the eigenequation, Ξθ = λmax(Ξ)θ. Summing (A.1) using weights θj and, again, by
the linearity of the inner product, we have

⟨ψ∗, ψ∗⟩ =
N∑
j=1

θj⟨ψ∗, ψj⟩ = λmax(Ξ)
N∑
j=1

θ2j = λmax(Ξ). (A.2)

(A.1) and (A.2) jointly yield

⟨ψ∗, ψj⟩ = θj⟨ψ∗, ψ∗⟩ = θjλmax(Ξ).

Equation (23) follows from the linearity of the inner product.
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For (24), notice that from (23) we have:(
⟨ψ∗, ψ̂⟩
⟨ψ∗, ψ∗⟩

)2

=

(
N∑
j=2

αjθj

)2

≤

(
N∑
j=2

α2
j

)(
N∑
j=2

θ2j

)
= 1− θ21.

The inequality follows from Cauchy-Schwarz (with equality when αj = θj/
√∑N

j=2 θ
2
j ).

The final equality follows from
∑N

j=2 α
2
j =

∑N
j=1 θ

2
j = 1. Rearranging terms yields

equation (24).

A.3.2 Proof of Theorem 3

Proof. We first note that, under the constraint K ′θ = 0,

θ′Ξθ = θ′Ξ̌θ + θ′P ′
KΞPKθ + 2θ′P ′

KΞMKθ = θ′Ξ̌θ,

where PK = I −MK . As such, the constrained max-share problem (25) becomes an
unconstrained max-share problem

argmax
θ
θ′Ξ̌θ subject to θ′θ = 1. (A.3)

It is easy to see that Ξ̌ = MKΞMK remains Hermitian. Moreover, by direct calcula-
tion, the (j, j ′) element of Ξ̌ is Ξ̌jj′ = ⟨

∑N
k=1MK,kjψk,

∑N
k=1MK,kj′ψk⟩, which inherits

the same inner product operation from the definition of Ξ as in Theorem 1 but over a
different set of vectors

{
ψ̌j

}N
j=1

, where ψ̌j ≡
∑N

k=1MK,kjψk. Theorem 1 thus applies
in (A.3), as long as δN1 is attainable.

Sufficiency (⇒): If K ′δN1 = 0, δN1 is attainable, the sufficiency part of Theorem 1
(with Ξ replaced by Ξ̌) implies that δN1 is the unique solution to (25).

Necessity (⇐): If δN1 is the unique solution to (25), it has to satisfy the constraint
in (25), so K ′δN1 = 0. The necessity part of Theorem 1 (with Ξ replaced by Ξ̌) implies
that Ξ̌ = Ξ̌1,1 ⊕ Ξ̌2:N,2:N and Ξ̌1,1 > λmax(Ξ̌2:N,2:N).
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A.3.3 Proof of Corollary 1

Proof. In the constrained max-share problem (25), suppose that the feasibility con-
dition K ′δ1 = 0 holds, then MK is block-diagonal:

MK = 1⊕MK2:N,:
,

where K2:N,: selects all but the first row of K and MK2:N,:
is the annihilator ma-

trix for K2:N,:, that is, MK2:N,:
=
(
IN−1 −K2:N,:

(
K ′

2:N,:K2:N,:

)−1
K ′

2:N,:

)
. Therefore,∑N

k=1MK,k1ψk = ψ1 and Ξ̌1,1 = Ξ1,1.
The orthogonality condition in Theorem 3 becomes

⟨ψ1,
N∑
k=2

MK,kj′ψk⟩ = 0 for all j′ = 2, 3, . . . , N, (A.4)

which is implied by the orthogonality condition in Theorem 1 and the linearity of the
inner product operation. On the other hand, without the orthogonality condition in
Theorem 1, for any l = 1, 2, . . . ,m, the lth constraint (column l of K) implies that

N∑
j′=2

Kj′,l⟨ψ1,
N∑
k=2

MK,kj′ψk⟩ = 0.

Therefore, the equations (A.4) are linearly dependent with m degrees of slackness.
Thus, the orthogonality condition in Theorem 1 is sufficient but not necessary for the
orthogonality condition in Theorem 3.

Furthermore, note that Ξ̌2:N,2:N can be expressed as MK2:N,:
Ξ2:N,2:NMK2:N,:

, and it
is easy to see that MK2:N,:

is an orthogonal projection matrix. By a variant of the
Poincaré Separation Theorem,3 we have

λmax(Ξ̌2:N,2:N) ≤ λmax(Ξ2:N,2:N).

Given Ξ̌1,1 = Ξ1,1, it is immediate to see that the relative size condition in Theorem
1 is sufficient but not necessary for the relative size condition in Theorem 3.

3This is also known as the Cauchy Interlacing Theorem; see Theorem 11.11 in Magnus and
Neudecker (2019).
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A.3.4 Proof of Proposition 1

Proposition 1 is a special case of a standard result for the differential of eigenvalues
and eigenvectors.4 We reproduce it in a form that facilitates the interpretation of our
results. We use ∥·∥ to denote the Euclidean (Frobenius) norm for vectors (matrices).

Lemma 5. Let Ξ0 be a real symmetric n×n matrix with a complete set of orthornormal
eigenvectors {v0j}nj=1 that span Rn. Suppose v0i is the eigenvector corresponding to
a simple eigenvalue λ0i of Ξ0 for some 1 ≤ i ≤ n. When Ξ0 is perturbed by an
infinitesimal and symmetric dΞ = o (∥Ξ0∥), the following first order perturbation
result holds for the new eigenpair (λi and vi such that Ξvi = λivi) of the perturbed
matrix, Ξ := Ξ0 + dΞ:

λi = λ0i + v′0idΞv0i +O
(
∥dΞ∥2

)
,

vi = v0i +
n∑

j=1
j ̸=i

v′0jdΞv0i

λ0i − λ0j
v0j +O

(
∥dΞ∥2

)
.

Proof. By Theorem 8.9 in Magnus and Neudecker (2019), the functions λ(Ξ) and
v(Ξ) are infinitely differentiable in the neighborhood N(Ξ0) ⊂ Rn×n of Ξ0. As such,
it is valid to neglect higher order terms and focus on the first order approximation to
the exact variation of λ0i and v0i in the event of an infinitesimal perturbation dΞ to
Ξ0, that is, dλi and dvi in λi = λ0i+dλi+O

(
∥dΞ∥2

)
, and vi = v0i+dvi+O

(
∥dΞ∥2

)
.

By construction, the perturbed matrix Ξ is symmetric and it is thus without loss
of generality possible to normalize its eigenvectors {vj}nj=1 such that

v′ivj =

1 i = j

0 i ̸= j
. (A.5)

Neglecting higher order terms, (A.5) implies

dv′iv0j + v′0idvj = 0, for 1 ≤ i, j ≤ n. (A.6)

By the definition of eigenvalue and eigenvector of Ξ, Ξvi = λivi. Substituting in
4See, for instance, Magnus and Neudecker (2019) for a textbook exposition for symmetric ma-

trices, Aït-Sahalia and Xiu (2019) for its application in PCA analysis of high-frequency data, and
Greenbaum, Li, and Overton (2020) for a comprehensive treatment for general square matrices.
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Ξ = Ξ0 + dΞ and the expansions of λi and vi, and neglecting higher order terms, we
obtain

Ξ0dvi + dΞv0i = λ0idvi + dλiv0i. (A.7)

Left multiplying (A.7) with v′0i, we have

v′0iΞ0dvi + v′0idΞv0i = v′0iλ0idvi + dλiv
′
0iv0i,

which, together with the facts that Ξ0v0i = λ0iv0i and v′0iv0i = 1, yields dλi = v′0idΞv0i.
Now, note that {v0j}nj=1 is orthonormal and spans Rn, and dvi ∈ Rn, so dvi =∑n

j=1 cijv0j, where cii = v′0idvi = 0 from (A.6) taking j = i, and for j ̸= i, cij is
determined as follows. Pre-multiplying (A.7) with v′0j, we have

v′0jΞ0dvi + v′0jdΞv0i = v′0jλ0idvi + dλiv
′
0jv0i,

which, together with the facts that Ξ0v0j = λ0jv0j and v′0jv0i = 0, yields

cij = v′0jdvi =
v′0jdΞv0i

λ0i − λ0j
.

Therefore, we have obtained

dvi =
n∑

j=1
j ̸=i

v′0jdΞv0i

λ0i − λ0j
v0j.

We now specialize the results of Lemma 5 to our setting for Proposition 1.

Proof. Ξ0 ≡ Ξ1,1 ⊕Ξ2:N,2:N is a real symmetric N ×N matrix with the largest eigen-
value Ξ1,1 and the principal eigenvector δN1 from Theorem 1. The perturbation
dΞ = o (∥Ξ0∥) by assumption. Thus, it is valid to specialize Lemma 5 to Ξ = Ξ0+dΞ

by treating Ξ0 as the unperturbed matrix and Ξ as the perturbed matrix.
By Lemma 3 (a), {λ0j}Nj=2 are also eigenvalues of Ξ0. Also, define v0j = (0, w′

0j)
′

for 2 ≤ j ≤ N . Then, δN1 ⊥ v0j for any j and thus {δN1 , {v0j}Nj=2} constitutes a
complete set of orthonormal eigenvectors of Ξ0.

Denote the principal eigenvector of Ξ by v1, which is unique by the assumption
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that λmax(Ξ) is simple. By Lemma 5 and up to a first order approximation, λmax(Ξ)−
λmax(Ξ0) =

(
δN1
)′
dΞδN1 + O

(
∥dΞ∥2

)
= 0 + O

(
∥dΞ∥2

)
= O

(
∥ν∥2

)
by construction.

Thus,

v1 = δN1 +
N∑
j=2

v′0jdΞδ
N
1

Ξ1,1 − λ0j
v0j +O

(
∥ν∥2

)
= δN1 +

N∑
j=2

w′
0jν

Ξ1,1 − λ0j
v0j +O

(
∥ν∥2

)

A.3.5 Proof of Proposition 2

Proposition 2 is an application of the Davis-Kahan sin θ theorem (Davis and Kahan,
1970), which yields bounds on the distance between subspaces spanned by population
eigenvectors and their sample analogs. These correspond, respectively, to eigenvectors
of the unperturbed and perturbed matrices in our context. However, their bounds
are usually in terms of eigengaps between certain population and sample eigenvalues.
One of its variants (Yu et al., 2015) is then often used to derive such bounds in
terms of the population eigenvalue separation condition and a smaller matrix norm
(minimum of a scaled operator norm and the Frobenius norm). In the following
auxiliary lemma, we specialize these bounds to study the change of the principal
eigenvector in our context. We denote the operator norm for matrices by ∥·∥op, i.e.,
∥X∥op ≡ inf{c > 0 : ∥Xv∥ ≤ c ∥v∥ for all v ∈ V} for the normed vector space V .

Lemma 6. Let Ξ0 be a real symmetric n × n matrix, with eigenvalues λ01 > λ02 ≥
· · · ≥ λ0n. Suppose Ξ0 is perturbed by a symmetric dΞ, resulting in another symmetric
matrix Ξ, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. If v01 and v1 are the (normalized)
principal eigenvector of Ξ0 and Ξ, respectively and denote the principal angle between
them by Θ(v01, v1), then

sinΘ(v01, v1) ≤
2 ∥dΞ∥op
λ01 − λ02

=
2λmax(dΞ)

λ01 − λ02
.
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Moreover, if v′1v01 ≥ 0, then

∥v1 − v01∥ ≤
23/2 ∥dΞ∥op
λ01 − λ02

=
23/2λmax(dΞ)

λ01 − λ02
.

Proof. This is a direct implication of Corollary 1 in Yu et al. (2015) for j = 1. The
bound on the Euclidean distance between the principal eigenvectors is by the fact
that

∥v1 − v01∥2 = 2− 2v′1v01 = 2 [1− cosΘ(v01, v1)]

≤ 2
[
1− cos2 Θ(v01, v1)

]
= 2 sin2 Θ(v01, v1).

Using the above Lemma 6, we now prove Proposition 2.

Proof. This is a direct application of Lemma 6 and Theorem 1 (which gives rise
to the principal eigenvector and the eigengap for the unperturbed matrix Ξ0 ≡
Ξ1,1 ⊕Ξ2:N,2:N). It remains to calculate ∥dΞ∥op. By the formula for the determi-
nant of a block matrix, one has det(λ) det

(
λIN−1 − 1

λ
νν ′
)
= 0, whose largest nonzero

root is ∥ν∥ and thus ∥dΞ∥op = ∥ν∥.

B Supplementary Results

B.1 Special Cases

We now characterize the solution to the max-share problem, (9) in two special cases.

B.1.1 Rank One

Ξ is rank one when the impulse responses of the target variable to all shocks have
same shape. A particular case is in the time domain problem with only one horizon
in the set H. It represents the most severe violation of orthogonality with weights
characterized by the following lemma.

Lemma 7. Suppose Ξ is rank one. Then the solution to the max-share problem, (9),
satisfies:

θj ∝
√
Ξj,j. (B.1)
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Proof. Write Ξ = vv′. The unique non-zero eigenvalue is
∑

j v
2
j . By the definition of

the eigenvector, we have Ξθ =
∑

j v
2
j θ, and thus vj

∑
j′ vj′θj′ = θj

∑
j′ v

2
j′ , or

θj√
Ξj,j

=
θj
vj

=

∑
j′ vj′θj′∑
j′ v

2
j′

for all j.

Lemma 7 states that when Ξ is rank one, the contamination to the identified
shock is proportional to the size of impulse responses to each of the shocks. Although
inconsequential for the identified response of the target variable to the max-share
shock, the convolution of shocks can substantially impact other quantities including
the impulse responses of other variables and forecast error or dynamic variance de-
compositions. The rank one case illustrates a more general result that the principal
eigenvector of Ξ will load on combinations of shocks with similarly shaped responses,
emphasizing the role of the orthogonality condition in Theorem 1.

B.1.2 Two Shocks

With N = 2, we have an analytic solution for the max-share problem, (9), even when
the identification conditions are not satisfied. The formulas provide intuition for how
violations to orthogonality and relative size matter.

Lemma 8. Suppose N = 2 and assume without loss of generality that Ξ1,2 > 0. Then
the solution to the max-share problem, (9), implies:

θ1
θ2

=
ϑ+

√
ϑ2 + 4

2
where ϑ ≡ Ξ1,1 − Ξ2,2

Ξ1,2

. (B.2)

Proof. The eigenvector θ satisfies (Ξ− λI)θ = 0, which implies:

λ = Ξ1,1 + Ξ1,2
θ2
θ1

= Ξ2,2 + Ξ1,2
θ1
θ2
.

Multiplying throughout by θ1/θ2 and dividing by Ξ1,2, we have:(
θ1
θ2

)2

− ϑ

(
θ1
θ2

)
− 1 = 0,

13



where ϑ ≡ Ξ1,1−Ξ2,2

Ξ1,2
. The quadratic equation has two solutions, with (B.2) corre-

sponding to the larger eigenvalue.

The expression for θ1/θ2 is an increasing function of ϑ. The role of the orthog-
onality condition is captured by Ξ1,2 in the denominator of ϑ. In particular, with
Ξ1,2 = 0, the ratio θ1/θ2 tends to either zero or infinity. In contrast, Ξ1,2 =

√
Ξ1,1Ξ2,2

corresponds to the rank one case. The numerator of ϑ captures the relative size con-
dition. Substantial weight will be placed on Shock 1 if Ξ1,1−Ξ2,2 is sufficiently large,
i.e., the response to Shock 1 is sufficiently large relative to Shock 2 at the chosen
horizons or frequencies.

When Ξ1,2 = 0, then the eigenvectors and associated eigenvalues are δj and Ξj,j

for j ∈ {1, 2}. Orthogonality is then satisfied and the relative size condition requires
that Ξ1,1 > Ξ2,2.

B.2 Extension of Theorem 2 to Constrained Problem

The following theorem extends Theorem 2 to the constrained problem. As before,
denote the annihilator matrix by MK ≡ I −K(K ′K)−1K ′, and define Ξ̌ =MKΞMK

and ψ̌j =
∑N

k−1MK,kjψk for j = 1, . . . , N .

Theorem 4. Suppose the constrained max-share problem (25) has a unique solu-
tion θ = (θ1, . . . , θN)

′ with associated largest eigenvalue λmax(Ξ̌) and max-share im-
pulse response ψ̌∗ =

∑N
k=1 θkψ̌k. Then for an impulse response ψ̂ ≡

∑N
j=2 αjψj with∑N

j=2 α
2
j = 1, we have:

ǍMKP̌ = λmax

(
Ξ̌
)
W̌ (B.3)

and the following upper bound for the weight on the targeted shock:

θ21 ≤ 1− λmax

(
Ξ̌
)−2 ∥∥ǍMKP̌

∥∥2 , (B.4)

where we have defined:

Ǎ ≡

[
0 01×(N−1)

0(N−1)×1 diag(α2, . . . , αN)

]
, P̌ =


⟨ψ̌∗, ψ1⟩

...
⟨ψ̌∗, ψN⟩

 , W̌ =


0

α2θ2
...

αNθN

 .
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Proof. As in the proof of Theorem 3, Ξ̌ remains Gramian. We thus have, for any j,

⟨ψ̌∗, ψ̌j⟩ =
N∑
k=1

θk⟨ψ̌k, ψ̌j⟩ = λmax(Ξ̌)θj, (B.5)

where the second equality follows from the Gramian structure of Ξ̌j,k and the jth row
of the eigenequation (Ξ̌θ = λmax(Ξ̌)θ). Now, summing up (B.5) using weights θj and,
again, by the linearity of the inner product, we have:

⟨ψ̌∗, ψ̌∗⟩ =
N∑
j=1

θj⟨ψ̌∗, ψ̌j⟩ = λmax(Ξ̌)
N∑
j=1

θ2j = λmax(Ξ̌). (B.6)

(B.5), (B.6), and the definition of ψ̌j jointly yield:

⟨ψ̌∗, ψ̌j⟩ = θj⟨ψ̌∗, ψ̌∗⟩ = θjλmax(Ξ̌) =
N∑
k=1

MK,kj⟨ψ̌∗, ψk⟩, (B.7)

where j = 1, 2, . . . , N . The matrix form of (B.7) implies:

ǍMKP̌ = λmax(Ξ̌)Ǎ


θ1
...
θN

 = λmax(Ξ̌)W̌ , (B.8)

which is exactly (B.3). Taking the norm of both sides of (B.8) and applying the
Cauchy-Schwarz inequality, we have:

λmax

(
Ξ̌
)−2 ∥∥ǍMKP̌

∥∥2 = ∥∥W̌∥∥2 = N∑
j=2

α2
jθ

2
j

≤

(
N∑
j=2

α2
j

)(
N∑
j=2

θ2j

)
= 1− θ21,

which yields (B.4).
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B.3 Supply and Demand

Model Impulse Responses. Normalizing the coefficient on the supply shock in-
novations, we can write the supply and demand system (37)-(38) as a VAR(1):

Yt = GFG−1Yt−1 +

[
γd γs

−1 1

]
Qεt, (B.9)

where

Yt =

[
qt

pt

]
, F =

[
ρs 0

0 ρd

]
, Q =

[
σs 0

0 σd

]
, and G =

1

γs + γd

[
γd γs

−1 1

]
.

The innovations εt are iid standard normal and ρd is the persistence of the demand
shock. The true impulse response at horizon h of the ith variable to a one unit
innovation in the jth shock is the (i, j) element of:

Ψh = GF hQ =
1

γs + γd

[
(ρs)hγdσs (ρd)hγsσd

−(ρs)hσs (ρd)hσd

]
. (B.10)

Each of the elements of Ψh has the form (ρx)hq where x ∈ {s, d} and q is the on-impact
response, as in an AR(1).

Frequency Domain Results. In the frequency domain, we follow Angeletos et al.
(2020) and target the response of output at frequency band Ω =

[
2π
32
, 2π

6

]
. They label

this as the “main business cycle” shock, finding the striking result that the identified
shock produces a large responses in real variables but a small response in inflation.

First, we consider the case with symmetric processes for the supply and demand
shocks:

γs = γd = 1.00, ρs = ρd = 0.95, σs = σd = 1.00.

The top panel of Figure B.1 shows that the max-share shock qualitatively resembles
the main business cycle shock in Angeletos et al. (2020), producing a positive response
in output, qt, but no response in price, pt. The residual shock displays the opposite
behavior, producing a zero response in output but a substantial response in price. In
this model, the lack of response in output to the residual shock occurs as long as the
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Figure B.1: Main business cycle shock in supply and demand example identified
via max-share in the frequency domain. Top panels: Symmetric responses with
ρs = ρd = 0.95; Bottom panels: Asymmetric responses with ρs = 0.85 and ρd =
0.95. Dashed lines indicate true responses; green and orange solid lines correspond
to identified max-share and residual shocks, respectively.

two true underlying shocks have the same persistence, ρs = ρd. Since this implies
that the response of output to both the max-share and residual shocks must have
AR(1) dynamics with persistence ρs = ρd, the residual shock is forced to produce a
zero response. The responses of price then depend on the elasticities, {γs, γd}, and
standard deviations, {σs, σd}. In this context, valid max-share identification rests
on the argument that the one other shock in the economy affects prices but not
quantities.

We deviate from this knife-edge case by setting ρs ̸= ρd. The lower panel of Figure
B.1 shows results when we choose ρs = 0.85 but keep all other parameters unchanged.
The max-share shock now produces a positive but relatively small response in price.
However, the residual shock also generates impulse responses in output and price
that have the same sign. In other words, with this parameterization, max-share
identification implies that both the supposed main business cycle shock of Angeletos
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et al. (2020) and the residual shock have the features of demand shocks, essentially
ruling out the presence of supply shocks.

This message echoes our findings from the time domain—in using max-share iden-
tification, researchers need to be careful of implications for not only the targeted
shock, but also the untargeted ones. In both cases discussed here, the orthogonality
conditions lead to untargeted shocks with responses that seem unlikely from economic
theory.

B.4 Empirical Application

Figures B.2 and B.3 show the contributions of the shocks to the FEV of each variable,
providing further suggestive evidence that the shocks are not all be cleanly identified.

First, the total contribution of the shocks to FEVs sums to more than one for
certain variables and horizons at the posterior median. This occurs in the time
domain for TFP at around horizon 20 and for GDP at around horizon 12. In the
frequency domain, we similarly see this at certain business cycle frequencies for TFP,
consumption, and GDP.

Second, while the max-share shock does account for a substantial fraction of the
FEV at the targeted horizons and frequencies, there are also other shocks that in-
dividually have nontrivial FEV contributions. For example, the TFP surprise shock
accounts for around 1/3 to the FEV of TFP at horizon 40, the target horizon for
the TFP news shock. In addition, the TFP news shock accounts for around 1/3 at
frequency 2π/32. These contributions suggest that if orthogonality is not satisfied,
max-share could place a sizable weight on these shocks.
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Figure B.2: Posterior estimates for FEV contributions of identified shocks in the
time domain. Solid lines: Median response; Shaded regions: 68% error bands.
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Figure B.3: Posterior estimates for FEV contributions of identified shocks in the
frequency domain. Solid lines: Median response; Shaded regions: 68% error
bands.
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