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Abstract

Max-share identification relies on a decomposition of the forecast error variance (FEV)

over a target horizon. Consequently, it often conflates multiple shocks because the

contribution to the FEV depends on the impulse responses at untargeted horizons and

the shapes of the responses to untargeted shocks. We alleviate the issues using a so-

called “single horizon” alternative that focuses narrowly on the actual target horizon.

We characterize the identified shock in terms of true structural shocks in the single

horizon problem and show that this typically bounds results in the literature’s usual

implementation. Using a numerical demand and supply example and an empirical

news shock application, we show that the traditional max-share approach inadver-

tently places weight on untargeted transitory shocks, a problem that the single horizon

approach avoids.
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1 Introduction

Structural vector autoregressions (SVARs) are the macroeconomist’s dominant tool for the

empirical study of economic policies and the sources of business cycles. Key to this framework

is the ability to identify structural shocks, that is, the mutually independent underlying

drivers of economic activity. A variety of alternative approaches have proliferated since

early approaches to structural identification, such as recursive orderings of shocks (Sims,

1980). Recently, the so-called max-share approach has become increasingly popular. Max

share identifies a structural shock as the one that maximizes its contribution to a particular

economic variable’s forecast error variance (FEV) over some horizon or frequency.

A prominent example is the identification of a news shock affecting total factor produc-

tivity (TFP). A TFP news shock is the expectation of a future change in TFP even though

it has not yet been realized. Even before the actual change in TFP, the news shock has

an effect on economic activity as households and firms respond to their expectations. Con-

sequently, the literature has sought to identify structural TFP news shocks by maximizing

their contribution to the FEV of TFP over some medium or long horizon (Beaudry and

Portier, 2006; Barsky and Sims, 2011).

We show in this paper that structural identification via max-share, as it has been em-

ployed in the applied literature, is problematic since it conflates the effects of a multitude of

shocks. As a result, the literature misstates both the impulse responses and the importance

of various shocks. This problem is pervasive, which we demonstrate using simple analytical

and numerical examples as well as an application to the news shock literature. Despite the

widespread use of max-share, we argue that the literature lacks a general analysis of its per-

formance and validity. This paper fills that gap by discussing what determines the weights

that max-share identification places on the true structural shocks of a general VAR setup

and the tension between these forces and the usual justification for max-share. Finally, we

propose a closely related alternative that overcomes key issues we highlight and makes the

underlying identification assumptions more transparent.

Max-Share and Its Problems. To understand the identification problems that can arise

with the max-share approach, consider the problem for some horizon H and target variable

i, as originally proposed by Faust (1998) and followed by much of the subsequent literature.

Max-share identifies a shock by finding the rotation that maximizes the identified shock’s
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Figure 1: Impulse responses to shocks in stylized example. Discussion primarily considers
general choice of a and b; figure plots case with a = 0.8 and b = 0.2.

contribution to the FEV of the target variable i, which is the ith diagonal element of:

H∑
h=0

ΨhΨ
′
h, (1)

where Ψh is a matrix whose (i, j) entry is the response of variable i to shock j at horizon

h. One can think of this as choosing a set of weights to attach to the shocks, with the true

shock of interest being correctly identified if all the weight is placed on it.

By focusing on the FEV, max-share conflates shocks in a way that contradicts its un-

derlying assumptions. A common motivation for max-share is that the shock of interest

dominates at the target horizon H in the sense that its impulse response is substantially

larger than those corresponding to the other shocks at the target horizon (Francis, Owyang,

Roush, and DiCecio, 2014; Barsky and Sims, 2011). For instance, an identified technology

shock preferably has the largest impact on a technology variable, such as TFP. However, the

summation expression (1) makes clear that the FEV depends not only on horizon H but

also on all prior horizons h < H. Moreover, the matrix product in the summation causes

the weights to depend on relationships between impulse responses to different shocks that

the econometrician is unlikely to have prior knowledge about. These two pitfalls potentially

lead to highly misleading identification.

As a simple example, consider a structural VAR in which the impulse responses of the

target variable to the three true shocks are shown in Figure 1. Suppose we seek to identify

shock 1 and consider a target horizonH = 1, with the intuition that it should have a relatively

large response after impact. Max-share identifies a shock that is a weighted average of the
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three true shocks. Denoting the weight on shock j by θj, we can show:

θ1
θ2

=
b

a
and

θ1
θ3

=
b

a2 + b2
. (2)

These relative weights highlight the two issues with max-share identification described above.

First, the weights depend not only on the impulse responses at the target horizon h = 1,

but also at horizon h = 0. The weight on shock 1 is decreasing in the impact response, a, to

shock 3, even though it is irrelevant to the size of the impulse response at the target horizon.

These dependencies arise even though in many cases the econometrician may not intend to

impose any beliefs about the shorter horizons h < H.

Second, the weight on the shocks depends on the relative shapes of the impulse responses

to different shocks (e.g., how much they decay with horizon or at what horizon they peak).

When |b| < |a|, reducing the magnitude of b increases the weight on shock 3 relative to shock

1 despite reducing the size of the impulse response to shock 3. In the limit, when b = 0,

zero weight is placed on the target shock 1 even though it is the only shock with a non-zero

response at the target horizon. This arises because b = 0 implies that the responses to shocks

2 and 3 are identical up to scale, increasing their joint contribution to the FEV. In other

words, to justify the use of max-share, the econometrician needs to impose beliefs not only

on the relative magnitude of the response to the shock of interest, but also the shapes of the

impulse responses for all the other shocks.

A Simple Alternative. As a safeguard against this misidentification issue, we propose

that researchers focus on the impulse response at a specific horizon rather than the FEV,

i.e., concentrate on a single term in the summation (1). In doing so, we remove dependence

on all horizons h ̸= H and make the exact shapes of the impulse responses irrelevant. We

refer to this approach as the single horizon problem.

The solution to the single horizon problem yields relative weights on the true shocks that

are exactly the relative size of their impulse responses at the target horizon. As with any

identification scheme, the single horizon problem is not always appropriate, but our results

clarify the necessary conditions for it to work well. Moreover, we show that the weights for

the Faust (1998) max-share approach are typically bounded by the weights obtained from

the single horizon problems for horizons 0 to H. Therefore, the single horizon problem for an

appropriately chosen h performs as well as or better than the FEV max-share identification.

In the stylized example above, the single horizon problem yields:

θ1 =
1√

1 + b2
, θ2 = 0, θ3 =

b√
1 + b2

. (3)

4



The weight on shock 1 increases as |b| decreases, with θ1 = 1 when b = 0. This intuitive

relationship is in stark contrast to the Faust (1998) approach above, where decreasing b

can in fact decrease the weight, θ1, on shock 1 even though it increases the relative size

of the impulse response to shock 1. In addition, no weight is placed on shock 2 since its

corresponding response at horizon 1 is zero, as is intended. While the weight on shock 1

will be small if b is large, it is likely easier to impose assumptions on b than on the joint

distribution of a and b. Indeed, Figure 1 shows that with a = 0.8 and b = 0.2, the Faust

(1998) approach yields an identified impulse response that is completely different than the

true response, whereas the single horizon impulse response closely resembles the true one.

Related Literature and Max-Share Applications. The idea of structural identifica-

tion via the FEV goes back to seminal work by Faust (1998), whose original goal was to

obtain bounds on VAR impulse response functions. The idea was refined and implemented

for identification purposes by Uhlig (2004a) and Uhlig (2004b). In a well-known contribution

Francis et al. (2014) apply this approach to the issue of long-run identification, that is, the

identification of shocks that have permanent effects. The original approach of Blanchard

and Quah (1989) and popularized by Gali (1999) is based on the idea of putting identifying

restrictions directly on the long-run variance, which is tenuous in small samples. In contrast,

Francis et al. (2014) suggest a max-share approach, identifying a permanent supply shock

as the one that maximizes its share in the FEV of labor productivity at a long horizon.

We consider a simple 2-variable demand and supply system in Section 3 to illustrate the

potential pitfalls of max-share identification in such settings.

Kurmann and Sims (2021) recognized the usefulness of max-share for the identification

of news shocks. They implement a strategy whereby a TFP news shock is identified as the

shock that maximizes the FEV of observed TFP over a 10-year horizon. This time span is

chosen based on a priori reasoning about the time taken for innovation to diffuse and for

inventions to become economically viable. Their approach has become the standard empirical

framework for identifying and estimating the effects of news shocks. Related work by Barsky

and Sims (2011) and Ben Zeev and Khan (2015) maximize the contribution to the sum of

FEVs over various horizons subject to additional constraints. The literature has produced

a wide range of estimates for the contribution of these identified shocks to business cycle

frequency output fluctuations, as summarized in Ramey (2016). We revisit this prominent

empirical application and contrast results from the standard max-share approach in the

literature with our single horizon problem.

In addition to the news shock literature, the max-share approach has been used to iden-

tify uncertainty shocks (Caldara, Fuentes-Albero, Gilchrist, and Zakraǰsek, 2016), credit
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shocks (Mumtaz, Pinter, and Theodoridis, 2018), business cycle shocks (Angeletos, Collard,

and Dellas, 2020), sentiment shocks (Levchenko and Pandalai-Nayar, 2020), risk premium

shocks (Basu, Candian, Chahrour, and Valchev, 2023), and exchange rate shocks (Chahrour,

Cormun, De Leo, Guerrón-Quintana, and Valchev, 2024). For many of these shocks, it is a

challenge to put sufficient zero and sign restrictions (Sims, 1980; Uhlig, 2005; Arias, Rubio-

Ramı́rez, and Waggoner, 2018) or to find suitable instruments (Mertens and Ravn, 2013;

Stock and Watson, 2018) for identification. An attraction of max-share identification is that

it only requires the seemingly simple assumption that the target shock is important for a

particular variable at some horizon or frequency. Our results reveal that this assumption is

less innocuous than it initially appears.

A spate of recent research has pointed out potential issues with max-share identification.

However, these contributions tend to focus narrowly on specific applications. For instance,

Dieppe, Francis, and Kindberg-Hanlon (2021) raise concerns about the possibility of con-

founding several shocks when using max-share to identify technology shocks. In response,

Francis and Kindberg-Hanlon (2022) use sign restrictions to address this issue. Similarly,

Kilian, Plante, and Richter (2023) point out that the use of max-share by Kurmann and

Sims (2021) to identify news shocks may produce misleading results and propose the use

of instrumental variables instead. Cascaldi-Garcia and Galvao (2021) show that when used

to separately identify news and uncertainty shocks, max-share yields shocks that are highly

correlated instead of being independent, an issue Carriero and Volpicella (2024) resolves by

jointly identifying multiple shocks by max-share. We build on these papers by presenting

more general results, which we then connect back to specific applications through numerical

or empirical examples.

Outline. Section 2 describes the setup and general results. Section 3 illustrates the results

numerically through a bivariate supply and demand example. Section 4 presents an empirical

news shock application. Finally, Section 5 concludes.

2 Properties of Max-Share

2.1 Setup

Consider a general structural VAR:

Yt =
L∑

ℓ=1

BℓYt−ℓ + Cεt, (4)
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where Yt is an N × 1 vector and εt is i.i.d. over time, with E[εt] = 0 and E[εtε
′
t] = I. We

can write the moving average representation:

Yt =
∞∑
h=0

Ψhεt−h (5)

where the N ×N matrix Ψh summarizes the impulse responses at horizon h.1 Each column

of Ψh corresponds to a shock, and each row corresponds to an endogenous variable. The

estimates of the reduced form VAR provides Σ = CC ′, but not C. Accordingly, we will

assume that ΨhΨ
′
h is known, but additional restrictions are required to identify Ψh.

To identify Ψh, we consider the problem:

argmax
θ

δ′i

[∑
h∈H Ψ̃hθθ

′Ψ̃′
h

]
δi

δ′i

[∑
h∈H Ψ̃hΨ̃′

h

]
δi

subject to θ′θ = 1, (6)

where θ is the rotation or vector of weights that we are solving for, δi is a vector with 1 in the

ith entry and 0 everywhere else, and H is set of horizons chosen by the econometrician based

on economic theory. Finally, Ψ̃h is an arbitrary rotation of the structural shocks satisfying

Ψ̃hΨ̃
′
h = ΨhΨ

′
h. For exposition, we will take Ψ̃h = Ψh, so that we can interpret the jth entry

of the solution to (6) as the weight that the max-share shock places on the jth true shock.2

We divide the possible choices of H into two cases:

• Single horizon: H = {h} is a singleton.

• Multiple horizon: H = {h0, . . . , hH} consists of more than one horizon.

The typical use of (6) in max-share identification, following Faust (1998), corresponds to

the multiple horizon case with H = {0, 1, . . . , H}. This maximizes the contribution of the

identified shock to the FEV of variable i. It is the standard practice in the identification of

technology shocks (Francis et al., 2014) and news shocks (Barsky and Sims, 2011). Taking

H → ∞ corresponds to long-run identification (Blanchard and Quah, 1989). The single

horizon problem with H = {0} and i = 1 corresponds to internal instrument identification

(Noh, 2018; Plagborg-Møller and Wolf, 2021).

1We have Ψh = (Bh)1:N,1:NC, where B is the autoregressive coefficient in the companion form of (4) and
(Bh)1:N,1:N denotes the upper-left N ×N submatrix of Bh.

2This choice of Ψ̃h affects the solution for θ in (6), but does not change the implied impulse responses to

the max-share shock. In practice, since the true responses are unknown, a common choice is to take Ψ̃h to
be the lower triangular matrix from the Cholesky decomposition of Σ.
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We will show that the single horizon approach provides improved performance and trans-

parency over the multiple horizon problem in identifying the true shock. Nevertheless, equa-

tion (6) also makes clear that the two approaches are equally straightforward to implement.

2.2 Theoretical Results and Simulation Evidence

We now establish several general results on the solution to (6). The closer the weight on the

true shock is to one, the better max-share identification approximates the true shock. How

this translates to individual impulse responses resembling the true responses depends both

on the weights and on those responses. However, since we will show that (6) only depends

on the impulse responses to the target variable, we only present results on the weights and

not the impulse responses. Sections 3 and 4 will discuss how the impulse responses could be

affected in practice. All proofs are provided in the Appendix.

Equivalent Eigenproblem. It is useful to first recast the problem as an eigenproblem,

as first discussed in Faust (1998).

Lemma 1. Solving (6) is equivalent to solving the eigenproblem for∑
h∈H

Ψ̃′
hδiδ

′
iΨ̃h (7)

subject to θ′θ = 1.

Taking Ψ̃h = Ψh, Lemma 1 provides intuition for the weights that max-share identifica-

tion places on the true shocks. The expression (7) is an N ×N matrix whose (j, j′) entry is

the dot product

ψH,j · ψH,j′ , where ψH,j ≡
[
Ψh0,ij · · · ΨhH ,ij

]′
(8)

and the dependence on i is suppressed to economize on notation. In particular, we have:

ψH,j · ψH,j′ =

∥ψH,j∥2 =
∑

h∈H Ψ2
h,ij if j = j′

∥ψH,j∥ ∥ψH,j′∥ cosαjj′ if j ̸= j′
, (9)

where we omit the dependence of αjj′ on H and i to reduce notation. The jth diagonal ele-

ment of (7) captures the size of the jth true impulse response, which is also the contribution

of shock j to the FEV of variable i. The (j, j′) off-diagonal element captures the similarity

of the j and j′ impulse responses, scaled by their sizes. The angle αjj′ captures how close the

vectors are. For instance, cosαjj′ = 1 implies that the vectors are parallel (i.e., the impulse

8



response of variable i to the jth and j′th are identical up to scale) and cosαjj′ = 0 implies

that the vectors are orthogonal. In the example in the Introduction, b = 0 corresponds to

cosα13 = 0 since the impulse response to shock 3 is zero whenever the response to shock 1 is

non-zero and cosα23 = 1 since the impulse responses to shock 3 is identical to that to shock

2, scaled by a. Intuitively, one can think of the max-share problem (6) as being analogous to

solving for the principal component of a set of variables (without normalizing them to have

unit variance), with the impulse response for variable i to each shock here corresponding to

a variable in the principal component analysis context. The comparison suggests two forces

at play in the max-share problem, both of which can contribute to misidentification.

First, a shock will receive greater weight if its corresponding impulse response is larger.

Importantly, this magnitude depends equally on the size of the impulse response at all

horizons in H. Thus, in the typical multiple horizon problem with H = {0, . . . , H}, we are

implicitly assuming a large response of variable i to the true shock of interest not only at

horizon H, but also at horizons prior to that. However, we often have little prior knowledge

of the relative size of shocks at short horizons even if we believe that one shock is likely

to dominate at horizon H. The multiple horizon problem then implicitly imposes stronger

assumptions than one might intend. In the example in the Introduction, this shows up in

the dependence of the weights on a despite it corresponding to a horizon other than the

target one. The single horizon approach resolves this issue since it removes dependence on

horizons h < H by construction.

Second, a shock receives greater weight if there are other shocks with impulse responses

of similar shape. For instance, if the impulse responses of variable i to shocks 2, . . . , N are

identical (or close) up to scale, then they will receive a large weight, potentially even if the

impulse response to each of them individually is smaller than the impulse response to shock

1. The example in the Introduction showed that this can be a powerful force leading to

counterintuitive results, with zero weight on shock 1 when b = 0 despite it being the only

shock with a non-zero response at the target horizon. This is analogous to how the principal

component of a set of variables depends both on the relative variance of the variables and

their correlation structure. In the multiple horizon problem, identification thus depends on

the similarity in impulse response shapes across all shocks even though the econometrician

may not intend to impose such assumptions. This force is not present in the single horizon

problem, since H is a singleton.

Using Lemma 1, we now characterize the single and multiple horizon problems. We will

denote the solution to the single horizon problem with H = {h} by θSh and the solution to

the multiple horizon problem by θMH . When H = {0, . . . , H}, we denote the solution by θM0:H .
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Single Horizon Problem. In the single horizon case, we can tightly characterize the

max-share solution in terms of the true shocks.

Proposition 1. With H = {h} and Ψ̃h = Ψh, the solution to (6) is:

θSh =
Ψ′

hδi
∥δ′iΨh∥

(10)

(up to a sign normalization).

Proposition 1 implies that the weight on shocks j in the single horizon case satisfies

θSh,j ∝ Ψh,ij. In other words, the max-share shock is a weighted average of the true shocks,

where the weight on shock j is proportionate to the size of impulse response of target variable

i to that shock at horizon h. Therefore, the solution to the single horizon problem will put a

large weight on the true shock of interest if and only if the impulse response of variable i to

that shock is substantially larger than its response to all the other shocks combined. When

identifying technology shocks or news shocks, this is typically the underlying assumption—

the shock of interest is taken to be the only one to generate a persistent response in the

target variable, hence generating a relatively large impulse response at some medium or long

horizon.

Nevertheless, Proposition 1 makes clear that there are conditions under which the single

horizon problem might fail to (approximately) identify the correct shock, as is the case in any

identification scheme. In particular, the single horizon max-share problem identifies a shock

that is necessarily contaminated by other shocks unless the impulse response of the target

variable i to those shocks is exactly zero at horizon h. While it is infeasible to check the

relative size of the true impulse responses in empirical applications, the conditions present

an object, i.e., the relative size of the impulse response to the target variable at a single

horizon, that an econometrician might plausibly be able to form a prior over. One can also

easily check if these conditions hold in a given model under reasonable parameterizations.

Multiple Horizon Problem with Two Shocks. For the multiple horizon problem,

analytical results are generally unavailable. However, we provide intuition from the special

case with two shocks, then provide simulation evidence for more general cases.

Lemma 2. With N = 2 shocks, the ratio of the weights in the solution to (6) is:

θMH,1

θMH,2

=
ϑ+

√
ϑ2 + 4

2
, (11)
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where

ϑ ≡ ∥ψH,1∥2 − ∥ψH,2∥2

ψH,1 · ψH,2

=
1

cosα12

(
∥ψH,1∥
∥ψH,2∥

− ∥ψH,2∥
∥ψH,1∥

)
(12)

and ψH,j is a vector whose kth entry is the impulse response of variable i to shock j at the

kth horizon, hk, of H, as before.

The solution (11) is increasing in ϑ, which captures the difference in the contributions of

each shock to the FEV of variable i, normalized by a dot product term. The numerator of ϑ

indicates that shock 1 receives more weight if it generates a relatively larger impulse response

overall across horizons h ∈ H. The denominator implies that the weights are more even if

the shape of the two impulse responses is closer. In the limit, with ψH,1 orthogonal to ψH,2,

i.e., cosα12 = 0, all the weight is placed on the shock with the larger impulse response. The

variable ϑ thus captures the role of the magnitude and correlation across the impulse response

of variable i to each shock. If shock 1 is the true shock, then one should chooseH to maximize

the relative magnitude of the impulse response to shock 1 (∥ψH,1∥ / ∥ψH,2∥−∥ψH,2∥ / ∥ψH,1∥)
and minimize the similarity between the impulse responses’ shapes (cosα12) in order to

maximize the weight on shock 1 (assuming ∥ψH,1∥ > ∥ψH,2∥).
The solution to the single horizon problem can also be expressed as (11), but with ϑ =

∥ψh,1∥ / ∥ψh,2∥−∥ψh,2∥ / ∥ψh,1∥. This is equivalent to (12) with H = {h} and cosα12 = 1. In

other words, the multiple horizon approach raises two concerns relative to the single horizon

one. Not only could the relative size of the impulse response to the true shock turn out to

be smaller when taken over the set of horizons H, but the similarity between the impulse

responses, as captured by cosα12, could also alter the weight on the true shock.

More concretely, consider a model with stationary demand shocks and permanent supply

shocks, which we will study more closely in Section 3. The above results show that increased

persistence in the demand shock weakens identification through three channels in the multiple

horizon approach with H = {0, . . . , H}. First, it increases the relative size of the demand

shock at the target horizon. Second, it also increases the relative size of the demand shock

at all prior horizons. Third, it makes the shape of the impulse response to the demand shock

closer to that corresponding to the supply shock. With the single horizon approach, the

latter two forces are no longer in effect.

Corollary 1. Consider the case with N = 2 shocks. Suppose the impulse responses are

positive, i.e., Ψh,ij > 0 for all h ∈ H and j ∈ {1, 2}, and ψH,1 · ψH,2 ̸= 0. Then the multiple
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horizon weights must be bounded by the single horizon weights:

θMH,j ≤ max
h∈H

θSh,j (13)

for j ∈ {1, 2}.

Corollary 1 provides sufficient conditions for the multiple horizon weights to be bounded

by the corresponding single horizon ones. The condition that the impulse responses are

positive simply requires that the impulse response function does not cross zero at some

horizon, which is true, for instance, when distinguishing news and surprise TFP shocks or

demand and supply shocks in many models. As we will see below, the condition is not

necessary, and the bound, in fact, holds for a wide range of impulse responses.

Simulation Evidence for Multiple Horizon Problem. In the absence of general the-

oretical results for the multiple horizon problem with N > 2, we now provide simulation

evidence to show that the insights from the Corollary 1 hold more generically.

Specifically, we consider impulse responses for the target variable i of the form:

Ψh,ij = µj + (−1)ςρhj + ϵh,j (14)

where µj ∼ Uniform(−1, 1), ρj ∼ Uniform(0, 1), ς ∼ Bernoulli(0.5), and ϵh,j ∼ N (0, 0.12).

These impulse responses have shape resembling that of an AR(1) process with persistence ρj,

but deviate at each horizon by ϵh,j and converge to some long-run response µj. This allows

for arbitrary signs and relative sizes of impulse responses, while keeping them empirically

plausible.3 We generate 106 draws and, for each draw, check if (13) holds for shock j = 1.

Figure 2 shows that for all values of N and H considered, the single horizon problem

provides bounds for the multiple horizon weights for at least 92 percent of the draws. The

fraction is increasing in both the number of shocks, N , and the horizon, H. It approaches 1

for large H and exceeds 0.99 for empirically relevant choices of N and H. These probabilities

increase even further if we restrict the impulse responses to be positive as in Corollary 1

(taking µj ∼ Uniform(0, 1), ς = 0, and ϵh,j = 0), with P
[
θM0:H,1 ≤ maxh∈{0,...,H} θ

S
h,1

]
> 0.994

for all N and H we consider.4

For practitioners, the above results suggest that one is likely do at least as well using

the single horizon problem with appropriately chosen h rather than the multiple horizon

problem with H = {0, . . . , H}. In many cases, such as our prototypical example in Figure 1,

3We obtain similar results taking ϵh,j = 0 or Ψh,ij ∼ Uniform(−1, 1).
4Furthermore, we find

∣∣θM0:H,1/θ
M
0:H,2

∣∣ ≤ maxh∈{0,...,H}

∣∣∣θSh,1/θSh,2∣∣∣ for all draws.
12
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Figure 2: Probability that θM0:H,1 ≤ maxh∈{0,...,H} θ
S
h,1 from simulated impulse responses.

the choice of h supported by theory is simply h = H. Even though estimation uncertainty,

which we have abstracted from for clarity, could lead to a preference for a different choice of

h or even a set of h’s, it is unlikely that including all horizons from 0 to H, as is standard

in the literature, would be optimal.

3 Illustrative Example: Supply and Demand

We now illustrate the results from Section 2 in the context of a simple demand and supply

system that can be expressed as a bivariate VAR(1). We assume the reduced form parameters

are known and identify the supply shock using max-share identification on output for a large

but finite H. The approach follows Francis et al. (2014), who target labor productivity

instead of output.

3.1 Setup

Consider the simple demand and supply system:

qst = γspt + ηst (15)

qdt = −γdpt + ηdt (16)

where qst , q
d
t , and pt denote the quantity demanded, quantity supplied, and price, respectively,

in logs. The supply shock ηst follows a random walk and demand shock ηdt follows a stationary

AR(1) process.

Using the fact that qt = qst = qdt in equilibrium and normalizing coefficient on the supply
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shock innovations, we can write the system as a VAR(1):

Yt = GRG−1Yt−1 +GSεt, (17)

where

Yt =

[
qt

pt

]
, R =

[
1 0

0 ρd

]
, S =

[
1 0

0 σd

]
, and G =

1

γs + γd

[
γd γs

−1 1

]
.

The innovations εt are iid standard normal and ρd is the persistence of the demand shock.

Since the supply shock is permanent but the demand shock is transitory, the supply

shock dominates the FEV of qt at the infinite horizon. Therefore, with known reduced

form parameters, the long-run identification of Blanchard and Quah (1989), i.e., setting

H = {0, . . . , H} with H → ∞, correctly identifies the supply shock. Francis et al. (2014)

consider a finite H in order to account for uncertainty in the reduced form parameters and

contamination from low frequency trends.

3.2 Analytics

The true impulse response at horizon h to a one unit innovation in the jth shock is:

Ψh = GRhS =
1

γs + γd

[
γd σd(ρd)hγs

−1 σd(ρd)h

]
. (18)

The single horizon problem with H = {h} obtains the impulse response to a combination of

supply and demand shocks:

θSh ∝

[
γd

σd(ρd)hγs

]
. (19)

This is simply the transpose of the top row of the impulse response matrix (18), as shown

in Proposition 1.

The demand innovation, εdt receives a heavier weight if it is more persistent (ρd) and

volatile (σd) since these increase response of the demand shock, ηdt , at horizon h periods

after the initial innovation. In addition, the demand shock receives a heavier weight if it is

relatively less elastic (γs/γd). If the price elasticity of demand, γd, is smaller, then quantities,

qt, respond more to the demand shock, ηdt . In this simple example, the horizon h only shows

up as an exponent on ρd. As h→ ∞, all the weight is placed on the supply shock. However,
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the relative weights for finite h are parameter-dependent.

We can contrast the single horizon approach with the multiple horizon problem, which

yields the solution (11) with:

ϑ =
γsσd

γd
1 + (ρd)H+1

1 + ρd
− (H + 1)

γd

γsσd

1− ρd

1− (ρd)H+1
. (20)

For the supply shock to be correctly identified, we require the ratio of weights on the demand

and supply shocks to converge to zero, i.e., θM0:H,d/θ
M
0:H,s → 0. This is indeed the case as

H → ∞. However, there is no guarantee that the weight on the supply shock will be

large with finite H. For example, with ρd = 0, the multiple horizon problem will only place

majority of the weight on the supply shock (θM0:H,d/θ
M
0:H,s < 1) for H >

(
γsσd

γd

)2

−1. The ratio

γsσd

γd captures the relative size of the demand shock impulse response on impact, highlighting

the persistent influence of short horizons on the multiple horizon weights even when the

demand shock itself displays no persistence. In contrast, the single horizon problem places

all the weight on the true supply shock for any target horizon h > 0.

3.3 Numerical Example

As a numerical proof-of-concept, we set:

γs = 1.00, γd = 0.50, ρd = 0.95, σd = 1.50

and assume as before that the supply shock follows a random walk with unit variance. We

maximize the contribution to output at horizon H = 40 to identify the supply shock. We

compare the typical multiple horizon implementation in the literature with H = {0, . . . , H}
to the single horizon case with H = {H}. As with the discussion above, we take the reduced

form parameters as given.

Figure 3 shows the impulse responses to the true shocks as well as those obtained using

max-share identification. While the impulse response of output to the true demand shock is

about three times the size of the supply shock on impact, this is reversed by horizon h = 40,

with the impulse response to the supply shock now three times that of the demand shock.

Despite the relatively small impulse response to the demand shock at horizon 40, the lower

left panel of Figure 3 shows that the true supply shock only accounts for less than a third

of the FEV, an indication that multiple horizon max-share is unlikely to perform well.

The multiple horizon max-share shock differs substantially from the true supply shock.

First, the top two panels show that the max-share shock produces a positive response in
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Figure 3: Results from numerical demand and supply example. Top row: Impulse responses
of output and price; Bottom left: Contribution of shocks to FEV of output; Bottom right:
Weight on supply shock with max-share identification for different target horizons. Dashed
lines correspond to true shocks and solid lines correspond to identified max-share shocks.

output and price, resembling a demand shock. Next, the bottom left panel shows that the

max-share shock has a contribution of close to one, roughly three times the FEV contribution

of the true supply shock. These results arise because the max-share shock only places a weight

of 0.39 on the supply shock, as seen in the bottom right panel. While the weight is increasing

in H, the improvement is relatively slow, with the weight at H = 0 already at 0.25.

The single horizon approach brings the max-share shock closer to the true supply shock,

with a weight of 0.72. Nevertheless, the behavior of the single horizon max-share and true

supply shocks still differ. The response of price to the single-horizon max-share shock is neg-

ative but relatively small. In particular, the impulse response on impact implies an elasticity

of demand, γd, of 2.6, over five times the size of its true value of 0.5. The contribution to

the output FEV remains more than double the true share across horizons 0 to 40.

The weight on the supply shock increases much faster with H in the single horizon case

since the solution is not contaminated by the large response of output to demand shocks at

short horizons. When we set H = 80, as the weight on the true supply shock rises to 0.95

for the single horizon problem but remains at 0.48 for the multiple horizon problem.

Overall, the above example emphasizes how the impulse responses at short horizons can
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have a substantial impact on the FEV even for relatively long horizons, thus impacting the

multiple horizon max-share identification approach. The single horizon problem improves

upon this by focusing narrowly on a single horizon for which the econometrician may have a

stronger prior on the relative magnitudes of the true impulse responses. However, unless the

true impulse response strongly dominates the remaining shocks at that horizon, one should

remain cautious in making quantitative statements.

4 Empirical Application: News Shocks

To show how the above analysis matters empirically, we now consider a common application

of max-share identification—estimating the effect and importance of TFP news shocks. This

follows a large literature (Beaudry and Portier, 2006; Barsky and Sims, 2011; Schmitt-Grohé

and Uribe, 2012) that seeks to identify shocks that predict future productivity without being

related to current or past fundamentals. Since the effect of the arrival of news will have an

impact on future TFP through, for instance, technology diffusion, Barsky and Sims (2011)

and Kurmann and Sims (2021) propose using max-share identification that target TFP at a

relatively long horizon to identify the news shock.

4.1 Data and Estimation

We follow Kurmann and Sims (2021) and estimate an 8-variable VAR with utilization-

adjusted TFP from Fernald (2014), the S&P 500 index, real consumption per capita, real

GDP per capita, real investment per capita, hours per capita, GDP deflator inflation, and the

federal funds rate. All variables except inflation and the federal funds rate are in log-levels.

Our sample period is 1960Q1 through 2019Q4. We use a Minnesota prior with tightness

parameter chosen to maximize the marginal likelihood.5

To identify the shock, we follow the approach of Kurmann and Sims (2021) and use the

multiple horizon problem with H = {0, . . . , 40}, i.e., finding the shock that contributes the

most to the FEV at horizon H = 40. We compare this benchmark to the single horizon

problem that similarly takes h = 40.

5There are three main differences relative to Kurmann and Sims (2021). First, we use the 2023 vintage
of the TFP series. Second, we have a longer sample period. Third, we use different hyperparameters for
the Minnesota prior. None of these materially affect our main conclusions. Our results are also robust to
including data through 2023Q4 or estimating the smaller 4-variable VAR in Kurmann and Sims (2021),
which includes only TFP, consumption, hours, and inflation.
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Figure 4: Posterior estimates for impulse responses to identified max-share shock. Solid
lines: Median response; Shaded regions: 68% error bands.

4.2 Results

Figure 4 shows the estimated impulse responses and Figure 5 shows the contribution of the

max-share shocks to the FEV of each variable. While the 68% error bands overlap, the point

estimates are notably different.

The single horizon shock generates an impulse response of TFP that is smaller at short

horizons but more persistent and larger at longer horizons than that of the multiple horizon

shock. Similarly, while the multiple horizon shock accounts for around 1/3 of the FEV at
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Figure 5: Posterior estimates for contribution of identified max-share shock to FEV. Solid
lines: median; Shaded regions: 68% error bands.

short horizons, the single horizon shock accounts for less than 5% of the FEV. The gap

narrows somewhat at longer horizons, with contributions of 77% and 63%, respectively, 40

quarters out. The small impulse response and contribution of the single horizon shocks at

short horizons is more consistent the interpretation of news shocks having a delayed effect

on TFP, which is the case in models such as those in Kurmann and Sims (2021) or Schmitt-

Grohé and Uribe (2012) as well as empirical estimates from Beaudry and Portier (2006).

Even though the response of TFP through horizon h = 30 is smaller under single horizon
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max-share identification, the responses of all the other variables are larger than with multiple

horizon max-share identification. For example, inflation falls by over 1.5 times as much on

impact and real GDP increases 1.5 times as much 40 quarters out.6 Similarly the single

horizon shock tends to contribute more to the FEV of most other variables, especially at

longer horizons. For example, the single horizon shock accounts for 80% of the FEV of GDP

growth as compared to 53% for the multiple horizon shock.

These results highlight the advantages and limitations of using single horizon max-share

identification instead of the usual multiple horizon approach in the literature. On the one

hand, using the single horizon approach reduces contamination of our identified shock by

other shocks that have relatively transitory effects. For example, suppose there is measure-

ment error, as emphasized by Kurmann and Sims (2021). Assuming the measurement error

is transitory, one would expect its relative impact on TFP to be larger at short horizons with-

out having any actual impact on other variables. Alternatively, Cascaldi-Garcia and Galvao

(2021) argue that financial uncertainty shocks contaminate the max-share identified TFP

news shocks, leading to a smaller impulse response of real activity to the identified shock.

This is consistent with the differences between the single and multiple horizon identification

results. Because the multiple horizon identification places a greater weight on transitory

shocks such as measurement error or financial uncertainty, it generates a TFP response that

is larger on impact and less persistent. In addition, other variables have smaller responses

since these contaminating shocks generate responses of smaller magnitude or opposite signs.

On the other hand, single horizon identification remains influenced by any other shocks

that continue to have an effect at horizon h = 40. A shock that induces an increase in

investment could generate a persistent rise in TFP. Even though such a shock is likely not

what one has in mind as an exogenous technological news shock in a typical model, it

could generate a substantial response in TFP, thus causing it to contaminate the identified

single horizon max-share shock. For instance, Justiniano, Primiceri, and Tambalotti (2011)

and Ben Zeev and Khan (2015) find quantitatively important roles for marginal efficiency of

investment shocks and investment-specific technology new shocks, respectively. Nevertheless,

Proposition 1 makes clear that the amount of contamination depends precisely on the relative

size of the true impulse responses at the target horizon, making the underlying identification

assumptions transparent.

Figure 6 compares our baseline results with H = 40 to those with H = 80, further

highlighting the difference between the single and multiple horizon approaches. The impulse

6The relative size of the single horizon responses is consistent with estimates from Miranda-Agrippino
et al. (2022), who also estimate a structural VAR, but identify news shocks using patent applications as an
external instrument.
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Figure 6: Posterior median for impulse responses to identified max-share shock for different
horizons. Solid lines: H = 40; Dashed lines: H = 80.

responses from the two approaches become closer with H = 80. These impulse responses

in turn are relatively similar to the single horizon impulse response for H = 40. In other

words, the single horizon approach appears more robust to the choice of horizon. Intuitively,

the contamination from short horizons in the multiple horizon approach decreases as we

consider a longer horizon, since those horizons constitute a smaller part of the summation

(7). For a practitioner, this provides another argument for using the single horizon approach.

It continues to serve purpose described by Francis et al. (2014) of standing in for long-run
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restrictions while avoiding the potential drawbacks of taking H → ∞. However, the results

are less dependent on the exact choice of H, thus allowing one to choose a smaller H and

better guarding against the issues from the long-horizon impulse response estimates.

5 Conclusion

Despite the increasing popularity of max-share identification, the interpretation of the result-

ing identified shock is less clear than one might expect. In particular, even though max-share

identification, as commonly implemented, targets the FEV at a given horizon H, it depends

crucially on the impulse responses at all horizons h ≤ H. Therefore, it inadvertently conflates

the relative size of impulse responses to different shocks across all these horizons even if one

is only willing to place assumptions on the responses at horizon H. Moreover, the weights

depend on the shapes of the impulse responses relative to each other, further obscuring the

interpretation.

We propose as an alternative a max-share identification that focuses only on one horizon

and thereby avoids these pitfalls, unlike the multiple horizon problem, which sums across

all horizons h ∈ H when constructing the FEV. When the data-generating process is a

structural VAR, the resulting weights on the true shocks are exactly proportional to the

relative size of the impulse response of the target variable to each of the shocks, allowing

one to easily discern conditions under which the true shock will be well-approximated by

the identified shock. If, at horizon h, the target variable still has substantial responses to

multiple shocks, then the our results reveal the exact degree by which the identified shock

is contaminated.

These insights are illustrated in an empirical news shock application. On the one hand,

the single horizon problem produces a TFP impulse response that is closer to theory, suggest-

ing that some measurement error or other auxiliary shocks might have been downweighted

relative to the multiple horizon approach. On the other hand, it further increases the con-

tribution to real activity, potentially due to a greater weight not only on TFP news shocks,

but also other shocks that have an effect on TFP at the 10-year horizon.

22



References

Angeletos, G.-M., F. Collard, and H. Dellas (2020). Business-Cycle Anatomy. American

Economic Review 110 (10), 3030–3070.

Arias, J. E., J. F. Rubio-Ramı́rez, and D. F. Waggoner (2018). Inference Based on Structural

Vector Autoregressions Identified With Sign and Zero Restrictions: Theory and Applica-

tions. Econometrica 86 (2), 685–720.

Barsky, R. B. and E. R. Sims (2011). News Shocks and Business Cycles. Journal of Monetary

Economics 58 (3), 273–289.

Basu, S., G. Candian, R. Chahrour, and R. Valchev (2023). Risky Business Cycles. Working

paper.

Beaudry, P. and F. Portier (2006). Stock Prices, News, and Economic Fluctuations. American

Economic Review 96 (4), 1293–1307.

Ben Zeev, N. and H. Khan (2015). Investment-Specific News Shocks and US Business Cycles.

Journal of Money, Credit and Banking 47 (7), 1443–1464.

Blanchard, O. J. and D. Quah (1989). The Dynamic Effects of Aggregate Demand and

Supply Disturbances. American Economic Review 79 (4), 655–673.

Caldara, D., C. Fuentes-Albero, S. Gilchrist, and E. Zakraǰsek (2016). The Macroeconomic
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A Proofs

A.1 Lemma 1

Proof. The lemma follows from:

δ′i

[∑
h∈H

Ψ̃hθθ
′Ψ̃′

h

]
δi =

∑
h∈H

Tr
(
θ′Ψ̃′

hδiδ
′
iΨ̃hθ

)
= θ′

[∑
h∈H

Ψ̃′
hδiδ

′
iΨ̃h

]
θ. (21)

Note that the objective is a scalar and thus equals its own trace. Because the trace is a linear

mapping, the objective becomes
∑

h∈H Tr
(
δ′1Ψ̃hθθ

′Ψ̃′
hδ1

)
. This, together with the fact that

Tr
(
δ′1Ψ̃hθθ

′Ψ̃′
hδ1

)
= Tr

(
θ′Ψ̃′

hδ1δ
′
1Ψ̃hθ

)
for each h, leads to the first equality. The second

equality holds again by the linearity of the trace operator.

A.2 Proposition 1

Proof. Denote Ψ′
hδiδ

′
iΨh by Ωh. First, note that Ωh is always of rank one since each row

is a scale multiple of its ith row δ′iΨh. It thus has only one non-zero eigenvalue, which is

obtained by the following fact,

Ωhθ
S
h =

Ψ′
hδiδ

′
iΨhΨ

′
hδi

∥δ′iΨh∥
= ∥δ′iΨh∥2 θSh . (22)

Because ∥δ′iΨh∥2 > 0 for nontrivial δ′iΨh, θ
S
h solves the eigenproblem for (7) with H = {h}.

Therefore, the solution to (6) is θSh (up to a sign normalization) by Lemma 1.

A.3 Lemma 2

Proof. With two shocks, the solution for θ corresponds to the eigenvector associated with

ΦH ≡
∑
h∈H

Ψ′
hδiδ

′
iΨh =

[
ϕ11 ϕ12

ϕ12 ϕ22

]
where ϕjj′ =

∑
h∈H

Ψh,ijΨh,ij′ . (23)

The eigenvector θ∗ satisfies (ΦH − λI)θ∗ = 0, which implies:

λ = ϕ11 + ϕ12
θ∗2
θ∗1

= ϕ22 + ϕ12
θ∗1
θ∗2
. (24)
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Multiplying throughout by θ∗2/θ
∗
1 and dividing by ϕ12, we have:(

θ∗1
θ∗2

)2

− ϑ

(
θ∗1
θ∗2

)
− 1 = 0 (25)

The quadratic has two solutions. Substituting these back into (24), we can verify that the

larger eigenvalue corresponds to:
ϑ+

√
ϑ2 + 4

2
. (26)

A.4 Corollary 1

Proof. Without loss of generality, consider j = 1 and suppose that

argmax
h∈H

|θSh,1| = H. (27)

Since Ψh,ij ≥ 0, we can normalize θSh,j to be positive for all h ∈ H.

Consider an alternative set of impulse response functions Ψ̂h satisfying:

Ψ̂h,i1Ψ̂h,i2 = Ψh,i1Ψh,i2 (28)

Ψ̂h,i1

Ψ̂h,i2

=
ΨH,i1

ΨH,i2

(29)

for all h ∈ H. Solving the above equations yields:

Ψ̂2
h,i1 =

Ψh,i1Ψh,i2

Ψ̂h,i2

Ψ̂h,i1 =
ΨH,i1

ΨH,i2

Ψh,i1Ψh,i2 >
Ψh,i1

Ψh,i2

Ψh,i1Ψh,i2 = Ψ2
h,i1 (30)

and similarly Ψ̂2
h,i2 < Ψ2

h,i2. For the alternative impulse responses Ψ̂h, because θ̂
M
H = θ̂Sh by

construction, the solutions to the multiple horizon problem and single horizon problem for

any h ∈ H coincide by Lemma 3 (the linear span collapses to {θ̂Sh}), i.e., θ̂MH = θ̂Sh = θSH .

Comparing the expressions for ϑ corresponding to Ψh and Ψ̂h, we have:

ϑ =
∥ψH,1∥2 − ∥ψH,2∥2

ψH,1 · ψH,2

<

∥∥∥ψ̂H,1

∥∥∥2

−
∥∥∥ψ̂H,2

∥∥∥2

ψ̂H,1 · ψ̂H,2

= ϑ̂. (31)
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To see this, notice that the denominators are equal by construction. In addition,

∥ψH,1∥2 =
∑
h∈H

Ψ2
h,i1 <

∑
h∈H

Ψ̂2
h,i1 =

∥∥∥ψ̂H,1

∥∥∥2

(32)

and similarly ∥ψH,2∥2 >
∥∥∥ψ̂H,2

∥∥∥2

. But we know that θMH,1 is increasing in ϑ since θMH,1/θ
M
H,2 is

increasing in ϑ from Lemma 2. Therefore, θMH,1 < θ̂MH,1 = θSH,1.

Lemma 3. The solution to (6) lies in span{θSh |h ∈ H}, where θSh is defined as in (10).

Proof. Denote the cardinality of H by |H| and label the set of horizons H = {h0, . . . , h|H|}.
We can write: ∑

h∈H

Ψ′
hδiδ

′
iΨh = ΦHΦ

′
H,

where ΦH is a N × |H| matrix whose (j, k) entry is the response of variable i to shock j

at horizon hk, collecting the impulse responses from different shocks to the variable i at

different horizons as columns, in the same ordering as the horizon indices in H.

By Lemma 1, we know that θMH is the eigenvector associated with the largest eigenvalue

of ΦHΦ
′
H, λ1 (ΦHΦ

′
H), and satisfy the following equality[∑

h∈H

Ψ′
hδiδ

′
iΨh

]
θMH = λ1 (ΦHΦ

′
H) θ

M
H . (33)

A rearrangement of the left-hand side of (33) yields[∑
h∈H

Ψ′
hδiδ

′
iΨh

]
θMH =

∑
h∈H

whΨ
′
hδi, (34)

where wh = (δ′iΨh) θ
M
H is a h-specific scalar weight.

On the other hand, λ1 (ΦHΦ
′
H) > 0 as long as there exists a h1 such that ∥δ′iΨh1∥ >

0. To see this, consider another h2 ∈ H, by the classical (dual) Weyl inequality in e.g.,

Exercise 1.3.5. in Tao (2012), we have λ1
(
Ψ′

h1
δiδ

′
iΨh1 +Ψ′

h2
δiδ

′
iΨh2

)
≥ λ1

(
Ψ′

h1
δiδ

′
iΨh1

)
+

λN
(
Ψ′

h1
δiδ

′
iΨh2

)
≥ ∥δ′iΨh1∥

2 > 0. Application of this argument recursively over h ∈ H leads

to a strictly positive λ1 (ΦHΦ
′
H). This observation, along with (33) and (34) leads to an

expression of θMH as a linear combination of θSh ’s,

θMH =
∑
h∈H

wh ∥δ′iΨh∥
λ1 (ΦHΦ′

H)
θSh .
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