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Abstract

This paper considers the problem of deriving heteroskedasticity and autocorrelation

robust (HAR) inference about a scalar parameter of interest. I derive finite-sample

optimal tests in the Gaussian location model, under nonparametric assumptions on

the underlying spectral density. The optimal test trades off bias and variability, and

requires an adjustment of the critical value to account for the maximum bias of the

implied long-run variance estimator. I find that with an appropriate adjustment to the

critical value, it is nearly optimal to use the so-called equal-weighted cosine (EWC)

test, where the long-run variance is estimated by projections onto q type II cosines. The

practical implications are an explicit link between the choice of q and assumptions on

the underlying spectrum, as well as a corresponding adjustment to the usual Student-t

critical value. Simulations show that the suggested new EWC test also performs well

outside the Gaussian location model.
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1 Introduction

This paper considers the problem of deriving appropriate corrections to standard er-

rors when conducting inference with autocorrelated data. The resulting heteroskedasticity

and autocorrelation robust (HAR) inference has applications in OLS and GMM settings.1

Computing HAR standard errors involves estimating the “long-run variance ” (LRV) in

econometric jargon. Classical references on HAR inference in econometrics include Newey

and West (1987) and Andrews (1991), among many others. The Newey-West/Andrews ap-

proach is to use t- and F -tests based on consistent LRV estimators and to employ the critical

values derived from the normal and chi-squared distributions. The resulting HAR standard

errors are asymptotically justified in a large variety of circumstances.

Small sample simulations,2 however, show that the Newey-West/Andrews approach can

lead to tests that incorrectly reject the null far too often. A large subsequent literature

(surveyed in Müller (2014)) has proposed many alternative procedures. These procedures

employ inconsistent LRV estimators and demonstrate better performance for controlling the

null rejection rate. To implement these procedures in practice, however, the user must choose

a tuning parameter. One example is the choice of b in the fixed-b scheme,3 in which a fixed-b

fraction of the sample size is used as the bandwidth in kernel LRV estimators. Another

example is the choice of q in orthornormal series HAR tests,4 in which the LRV is estimated

by projections onto q mean-zero low-frequency functions of a set of orthonormal functions.

The choice of the tuning parameter embeds a tradeoff between bias and variability of the

LRV estimator. It subsequently leads to a size-power tradeoff in the resulting HAR inference.

Previous studies address this tradeoff by restricting attention to HAR tests that are based on

kernel and orthornormal series LRV estimators. They derive the optimal tuning parameter

based on second-order asymptotics and under criteria that average the functions of type I

1For instance, OLS/GMM with HAR inference has been used in many econometric applications, such

as testing long-horizon return predictability in finance (see, e.g., Koijen and Van Nieuwerburgh (2011) and

Rapach and Zhou (2013)) and estimating impulse response functions by local projections in macroeconomics

(see, e.g., Jordà (2005)).
2See, e.g,, den Haan and Levin (1994, 1997) for early Monte Carlo evidence of the large size distortions

of HAR tests computed using the Newey-West/Andrews approach.
3See pioneering papers by Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang (2002, 2005).

Also see Jansson (2004); Müller (2004, 2007); Phillips (2005); Phillips, Sun, and Jin (2006, 2007); Sun,

Phillips, and Jin (2008); Atchadé and Cattaneo (2011); Gonçalves and Vogelsang (2011); Sun and Kaplan

(2012); and Sun (2014a), among many others.
4See, e.g., Müller (2004, 2007); Phillips (2005); Ibragimov and Müller (2010); and Sun (2013), among

many others.
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and type II errors with different weights.5 It is not clear, however, whether the resulting

HAR tests would remain optimal in finite samples if those restrictions were not imposed.

The purpose of this paper is to provide formal results of finite-sample optimal HAR

inference about a scalar parameter of interest, without restricting the class of tests and with

conventional notions of optimality in hypothesis testing. In particular, I derive finite-sample

optimal (weighted average power maximizing scale invariant) HAR tests in the Gaussian

location model, under nonparametric assumptions on the underlying spectral density. I find

that with an appropriate adjustment to the critical value, it is nearly optimal to use the

so-called equal-weighted cosine (EWC) test (cf. Müller (2004, 2007); Lazarus, Lewis, Stock,

and Watson (2018)), where the LRV is estimated by projections onto q type II cosines.

The main assumption in this paper is that the underlying normalized spectral density is

known to lie in a nonparametric function class F , which possesses a “uniformly minimal”

function. By normalized spectral density, I mean its value at the origin is normalized to unity.

By “uniformly minimal” function of F , I mean there exists a known function f in F such that

f(φ) ≤ f(φ), φ ∈ [−π, π] for all f in F . The function f determines how steeply sloped the

spectrum is allowed to be away from frequency zero. Note that an explicit stance on possible

shapes of the spectrum is necessary, because otherwise there does not exist a nontrivial HAR

test (cf. Pötscher (2002)). The notion of “uniformly minimal” function further characterizes

the minimal assumption on the spectrum, such that a nontrivial HAR test exists. I stress

that the class F is of a nonparametric nature, as opposed to possibly strong parametric

classes.6 It may contain smoothness restrictions (e.g., bounds on derivatives) and/or shape

restrictions (e.g., monotonicity).

This paper makes three main contributions. First, I establish a finite-sample theory of

optimal HAR inference in the Gaussian location model. To do so, I follow Müller (2014) and

recast HAR inference as a problem of inference about the covariance matrix of a Gaussian

vector. The spectrum, as an infinite-dimensional nuisance parameter, complicates solution

of the problem. To overcome this obstacle, I use insights from the so-called least favorable

approach and identify the “least favorable distribution” over the class F . The resulting

optimal test trades off bias and variability, and requires an adjustment of the critical value

to account for the maximum bias of the implied LRV estimator. Both the optimal tradeoff

5See, e.g., Sun, Phillips, and Jin (2008) and Lazarus, Lewis, and Stock (2019).
6For parametric examples, Robinson (2005) assumes that the underlying persistence is of the “fractional”

type and derives consistent LRV estimators under that class of DGP’s; Müller (2014) assumes that the

underlying long-run property can be approximated by a stationary Gaussian AR(1) model, with coefficient

arbitrarily close to one and derives uniformly valid inference methods that maximize weighted average power.
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and the adjusted critical value are functions of the underlying primitive F , namely the

spectral densities one is willing to consider.

Second, I find that nearly optimal HAR inference can be obtained by using the EWC

test, but only after an adjustment to the Student-t critical value. The practical implications

are an explicit link between the choice of q and assumptions on the underlying spectrum,

as well as a corresponding adjustment to the Student-t critical value. In detail, consider a

second-order stationary scalar time series yt. The spectral density of yt scaled by 2π is given

by the function f : [−π, π] 7→ [0,∞). To test H0 : E[yt] = 0 against H1 : E[yt] 6= 0, the

EWC test uses a t-statistic

tqEWC =
Y0√∑q
j=1 Y

2
j /q

, (1)

where Y0 is the sample mean of yt and Yj, j = 1, 2, . . . , q are q weighted averages of yt as Yj =

T−1
√

2
∑T

t=1 cos(πj(t− 1/2)/T )yt. These weighted averages can be approximately thought

of as independently normally distributed, each with variance T−1f(πj/T ). As mentioned

earlier, the choice of q embeds a bias and variance tradeoff of the LRV estimator
∑q

j=1 Y
2
j /q.

The conventional wisdom is to choose q sufficiently small such that {Yj}qj=1 can be treated

as independent normal with equal variance. By doing so, one avoid possibly large bias in

estimating the LRV, and the resulting EWC test has less size distortions when the Student-t

critical value is employed. In contrast, the new EWC test suggests using a larger q and an

appropriately enlarged critical value for more powerful inference. Both the choice of q and

the critical value adjustment depend on the class F .

Figure 1 illustrates this second contribution in the problem of testing E[yt] = 0, f ∈ F
against the local alternative E[yt] = δT−1/2 for T = 100, where yt follows a Gaussian white

noise and the “uniformly minimal” function of F is the normalized spectrum of an AR(1)

model with coefficient 0.8. In this context, to avoid size distortions larger than 0.01, one

needs to choose q = 3 when the Student-t critical value is employed. The new nearly optimal

EWC test, however, has q = 6 and inflates the Student-t critical value by a factor of 1.15.

This new EWC test nearly achieves a weighted average power bound for all size-controlling

scale invariant tests. It has a 38.1% efficiency gain over the size-adjusted EWC test using

q = 3, in order to achieve the same power of 0.5.7

7By efficiency gain, I mean the increase of δ2 in percent for the size-adjusted EWC test using q = 3 in

order to achieve the same power of the new EWC test. I note that one cannot directly appeal to Pitman

efficiency measure (the increase of the number of observations required to achieve the same power) in the

context of Figure 1, since the sample size T is fixed at 100. A different calculation, however, shows that for
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Figure 1: Power function plot of a weighted average power (WAP) bound induced test,

optimal EWC test and size-adjusted EWC test using q = 3.
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Notes: Under the alternative, the mean of yt is δT−1/2 and yt follows a Gaussian white noise. Under the null,

the “uniformly minimal” function of F corresponds to an AR(1) with coefficient 0.8. Sample size T = 100.

Third, I propose a simple first-order adjustment to the critical value of the EWC test. The

adjusted critical value is computed easily, by inverting a one-dimensional numerical integral.

For practical convenience, I offer a rule of thumb to adjust the Student-t critical value of

the EWC test in Table 2, as follows. Under a series of classes F in which the “uniformly

minimal” function is the normalized spectrum of an AR(1) with coefficient ρ = 1 − c/T ,

Table 1 lists the optimal choice of q and the adjustment factor of the Student-t critical value

for selected c (and ρ for fixed T = 100). It turns out that the resulting optimal choice of

q (almost) remains unchanged as T varies, for fixed c ≤ 55. More interestingly, for fixed q

and T , the adjustment factor does not change substantially under other types of F . Table 2

collects the adjustment factors in Table 1 for selected q. As a practical matter, if researchers

pick a value of q by some other means, then I suggest adjusting the corresponding Student-t

critical value according to Table 2.

This paper relates to a large literature. First, unlike the vast majority of the HAR

T = 50 the size-adjusted EWC test using q = 6 has power of 0.5, under the same δ such that the EWC test

using q = 3 yields power of 0.5 for T = 100.
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Table 1: Optimal q and adjustment factor of the Student-t critical value of level α EWC

test.

c 5 10 18 30 40 50 77

ρ 0.95 0.9 0.82 0.7 0.6 0.5 0.23

α = 0.05 (3, 1.55) (4, 1.25) (6, 1.15) (8, 1.09) (10, 1.06) (12, 1.05) (20, 1.03)

Notes: Based on a series of classes F , in which the “uniformly minimal” function is the normalized spectrum

of an AR(1) with coefficient ρ = 1−c/T . Sample size T is 100, but the resulting optimal choice of q (almost)

remains unchanged for fixed c ≤ 55 and for T = 200, 500, 1000.

Table 2: Rule of thumb for adjustment factor of the Student-t critical value of level α EWC

test.

q 3 4 6 8 9 10 11 12 16 20

α = 0.05 1.55 1.25 1.15 1.09 1.07 1.06 1.06 1.05 1.04 1.03

Notes: Each q is justified as the optimal choice of level α EWC test, under some class F and for sample size

T . An example of the corresponding class F is the one in which the “uniformly minimal” function is the

normalized spectrum of an AR(1) model with coefficient ρ = 1− c/T as in Table 1.

literature, I consider optimal HAR inferences without restricting the class of tests. Second,

the majority of the literature addresses the sampling variability of LRV estimators via the

so-called fixed-b asymptotics, and further accounts for bias by higher-order adjustment to

the fixed-b critical value.8 In contrast, I concurrently tackle bias and variance in estimating

the LRV by a first-order adjustment. Even so, the resulting adjusted critical value is easily

computed without simulations. Third, this paper contributes to the uniform size control

literature developed by Müller (2014), Preinerstorfer and Pötscher (2016), and Pötscher and

Preinerstorfer (2018, 2019). In particular, I analytically derive powerful tests that uniformly

control size over arguably large classes of models, while Müller (2014) numerically determines

powerful tests under a possibly restricted parametric class of models, and Preinerstorfer and

Pötscher (2016) and Pötscher and Preinerstorfer (2018, 2019) focus on size distortions and

power deficiencies of given HAR tests, allowing for general classes of models.

The suggestion of using a larger q and enlarged critical values for the EWC test mir-

rors recent recommendations for nonparametric inference, such as those of Armstrong and

8See, e.g., Velasco and Robinson (2001); Sun, Phillips, and Jin (2008); Sun (2011, 2013, 2014b); and

Lazarus, Lewis, and Stock (2019).

5



Kolesár (2018a,b). In different contexts, Armstrong and Kolesár and I both stress the advan-

tage of accepting bias in estimating a nonparametric function and of then using a suitably

adjusted critical value to account for the maximum bias. Our frameworks are, however, dif-

ferent. I consider a Gaussian experiment in which the heteroskedasticity is governed by an

unknown nonparametric function, while the main focus in Armstrong and Kolesár (2018a)

is an unknown regression function in the mean of a homoskedastic Gaussian experiment.

The remainder of the paper is organized as follows. Section 2 sets up the model and

discusses preliminaries. Section 3 derives optimal HAR inference under an essential simpli-

fication. Section 4 relaxes the simplification and discusses nearly optimal HAR inference.

Section 5 contains simulation results, and Section 6 concludes. Proofs and computational

details are provided in the appendices.

2 Model and Preliminaries

Throughout the paper, I mainly focus on inference about µ in the location model,

yt = µ+ ut, t = 1, 2, . . . , T, (2)

where µ is the population mean of yt and ut is a mean-zero stationary Gaussian process with

absolutely summable autocovariances γ(j) = E[utuy−j]. The spectrum of yt scaled by 2π

is given by the even function f : [−π, π] 7→ [0,∞) defined via f(λ) =
∑∞

j=−∞ cos(jλ)γ(j).

With y = (y1, y2, . . . , yT )′ and e = (1, 1, . . . , 1)′,

y ∼ N (µe,Σ(f)), (3)

where Σ(f) has elements Σ(f)j,k = (2π)−1
∫ π
−π f(λ)e−i(j−k)λdλ with i =

√
−1. I note that the

Gaussian location model (3) is considered by researchers as a stylized framework to provide

insights into HAR inference.9 The ideas and methods explored in this model can be used

as a foundation for studying HAR inference in general regression and GMM settings. It is

also plausible that the asymptotic validity of the suggested HAR tests can be established

for non-Gaussian time series, in which the large sample Gaussianity holds for spectral trans-

formations, such as those defined in (4) below.10 In fact, simulations in Section 5 show

9For HAR studies based on the Gaussian location model, see, e.g., Velasco and Robinson (2001); Jansson

(2004); Sun, Phillips, and Jin (2008); Sun (2011, 2013, 2014b); Müller (2014); Lazarus, Lewis, and Stock

(2019), among many others.
10See, e.g., Section 5.3 in Müller and Watson (2017) for a formal discussion of large sample Gaussianity of

suitably scaled spectral transformations, under appropriate assumptions about the underlying (local-to-zero)

spectrum.
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that the suggested HAR tests also perform well outside the Gaussian location model. A

formal extension of the present findings to general GMM settings and to non-Gaussian time

series may, however, involve additional complications.11 An investigation along those lines

is beyond the scope of this paper.

The HAR inference problem in (3) concerns testing H0 : µ = 0 (otherwise, subtract the

hypothesized mean from yt) against H1 : µ 6= 0 based on the observation y. The derivation of

powerful tests in this problem is complicated by the fact that the alternative is composite (µ

is not specified under H1), and the presence of the inifinite-dimensional nuisance parameter

f . I follow standard approaches to deal with µ and mainly focus on tackling the nuisance

parameter f in this paper.

It is useful to take a spectral transformation of the model (3). In particular, as introduced

in the introduction, consider the one-to-one transformation from {yt}Tt=1 into the sample

mean Y0 = T−1
∑T

t=1 yt and the T − 1 weighted averages:

Yj = T−1
√

2
T∑
t=1

cos(πj(t− 1/2)/T )yt, j = 1, 2, . . . , T − 1. (4)

Define Φ as the T × T matrix with first column equal to T−1e, and (j + 1)th column with

elements T−1
√

2 cos(πj(t− 1/2)/T ), t = 1, . . . , T , and ι1 as the first column of IT . Then

Y = (Y0, Y1, . . . , YT )′ = Φ′y ∼ N (µι1,Ω0(f)) (5)

where Ω0(f) = Φ′Σ(f)Φ. The HAR testing problem now becomes H0 : µ = 0 against

H1 : µ 6= 0 based on the observation Y .

A common device for dealing with the composite alternative in the nature of µ is to search

for tests that maximize weighted average power over µ. For computational convenience, I

follow Müller (2014) to consider a Gaussian weighting function for µ with mean zero and

variance η2. The scalar η2 governs whether closer or distant alternatives are emphasized

by the weighting function. For a given f , the choice η2 = (κ − 1)Ω0(f)1,1 (for analytical

simplifications later) effectively changes the testing problem to H ′0 : Y ∼ N (0,Ω0(f)) against

H ′1 : Y ∼ N (0,Ω1(f)), where

Ω1(f) = Ω0(f) + (κ− 1)ι1ι
′
1Ω0(f)1,1. (6)

This transforms the problem into one of inference about covariance matrices. The hyperpa-

rameter κ specifies a weighted average power criterion. As argued by King (1987), it makes

11For formal discussions of HAR inference in general GMM settings, see, e.g., Sun (2014a); Hwang and

Sun (2017, 2018).
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sense to choose κ in a way such that good tests have approximately 50% weighted average

power. The choice of κ = 11 would induce the resulting best 5% level (infeasible) test (reject

if Y 2
0 > 3.84Ω0(f)1,1) to have power of approximately P (χ2

1 > 3.84/11) ≈ 56%. I thus use

κ = 11 throughout the implementations.

In most applications, it is reasonable to impose that if the null hypothesis is rejected for

some observation Y , then it should also be rejected for the observation aY , for any a > 0.

Due to this scale invariance restriction, it is without loss of generality to normalize all f such

that f(0) ≡ 1. Furthermore, by standard testing theory (see, e.g., Chapter 6 in Lehmann

and Romano (2005)), any test satisfying this scale invariance property can be written as a

function of Y s = Y/
√
Y ′Y . The density of Y s under H ′i, i = 0, 1 is equal to (see Kariya

(1980) and King (1980))

hi,f (y
s) = C|Ωi(f)|−1/2

(
ys′Ωi(f)−1ys

)−T/2
(7)

for some constant C.

By restricting to scale invariant tests, the HAR testing problem has been further trans-

formed into H ′′0 : “Y s has density h0,f” against H ′′1 : “Y s has density h1,f .” The problem

remains nonstandard due to the presence of nuisance parameter f . For simplicity, I direct

power at flat spectrum f1 = 1 (white noise). The alternative H ′′1 then becomes a single hy-

pothesis H ′′1,f1 : “Y s has density h1,f1 ,” where Ω1(f1) = κT−1diag (1, κ−1, . . . , κ−1). Moreover,

under the null I assume f belongs to an explicit function class F and seek scale invariant

tests that uniformly control size over F .

The main concern of this paper is to test the composite null H ′′0 against H ′′1,f1 . In this con-

text, a well-known general solution to this type of problem proceeds as follows (cf. Lehmann

and Romano (2005)). Suppose Λ is some probability distribution over F , and the composite

null H ′′0 is replaced by the single hypothesis H ′′0,Λ : “Y s has density
∫
h0,fdΛ(f).” Any ad

hoc test ϕah that is known to be of level α under H ′′0 also controls size under H ′′0,Λ, because∫
ϕah(ys)

∫
h0,fdΛ(f)dys =

∫ ∫
ϕah(ys)h0,fdy

sdΛ(f) ≤ α. As a result, by Neymean-Pearson

lemma, the likelihood ratio test of H ′′0,Λ against H ′′1,f1 , denoted by ϕΛ,f1 , yields a bound on

the power of ϕah. Furthermore, if ϕΛ,f1 also controls size under H ′′0 , then it must be the best

test of H ′′0 against H ′′1,f1 and the resulting power bound is the lowest possible power bound.

In the jargon of statistical testing, the distribution that yields the best test (should it exist)

is called the “least favorable distribution,” and I denote it by Λ∗ throughout the paper.

Unfortunately, there is no systematic way of deriving the least favorable distribution.

To make progress, I proceed in the following two steps. First, I consider an approximate
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“diagonal” model, in which for a given f the joint distribution of Y under the null is

Y ∼ N (0, T−1diag(f(0), f(π/T ), . . . , f(π(T − 1)/T )). (8)

In model (8), I analytically derive the least favorable distribution of H ′′0 against H ′′1,f1 , under

mild assumptions on the class F . I also find that the “optimal” EWC test is nearly as

powerful as the derived optimal test. By optimal EWC test, I mean the EWC test under an

optimal choice of q and with an optimal adjustment to the critical value. Second, despite

the analytical intractability of the least favorable distribution without approximation (8), it

is still feasible to obtain upper bounds on the power of size-controlling tests of H ′′0 against

H ′′1,f1 . In particular, I use insights on optimal tests in the diagonal model (8) to establish

tight power bounds for all valid tests in the exact model (5). It turns out that the optimal

EWC test comes close to achieving this power bound. In light of Lemma 1 in Elliott, Müller,

and Watson (2015), this implies that the resulting new EWC test is nearly optimal for HAR

inference, and the proposed power bound is essentially the least upper bound. I elaborate

on the above analyses in Sections 3 and 4.

Model (8) is in general an approximation of the exact model (5) by ignoring off-diagonal

elements and simplifying the diagonal elements in Ω0(f). It is motivated by the fact that

(8) holds exactly when time series yt follows a Gaussian white noise or a Gaussian random

walk process. For stationary yt with f falling into other parametric classes, Müller and

Watson (2008) find that the covariance matrix of (Y0, Y1, . . . , Yq)
′ is nearly diagonal for

fixed q and large T . For stationary Gaussian yt with f being in nonparametric classes, the

aforementioned optimality results suggest that (8) is a useful simplification of (5) for HAR

inference. I will refer to (8) as the diagonal model and (5) as the exact model hereafter.

3 Optimal HAR Inference in the Diagonal Model

In this section, I derive powerful HAR tests in the diagonal model (8). As explained

above, I restrict attention to scale invariant tests that maximize weighted average power over

µ and direct power at the flat spectrum f1. Under the weighted average power criterion, as

specified by a given κ, I seek powerful tests as functions of Y s = Y/
√
Y ′Y in the problem of

Hd
0 : Y ∼ N

(
0, T−1diag(1, f (π/T ) , . . . , f (π(T − 1)/T )

)
, f ∈ F (9)

against Hd
1,f1

: Y ∼ N
(
0, κT−1diag(1, κ−1, . . . , κ−1)

)
,

where the superscript d in Hd
0 and Hd

1,f1
denotes the diagonal model.

The following assumptions are imposed on F throughout this section.
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Assumption 3.1

(a) There exists a f ∈ F such that f(φ) ≤ f(φ), φ ∈ [−π, π] for all f ∈ F .

(b) f(πj/T ) ≥ f(π(j + 1)/T ), j = 0, 1, . . . , T − 2.

(c) The class F contains all kinked functions defined by fa(φ) = max{f(φ), a}, for a ∈ [0, 1].

Assumption 3.1(a) states the existence of a “uniformly minimal” function in F , which

I will use f to denote throughout the paper. Since the value at the origin is normalized to

unity for all spectra here, this assumption can be written as f(0)/f(φ) ≥ f(0)/f(φ) for all

φ ∈ [−π, π] and f ∈ F . Loosely speaking, more persistence processes have higher values of

f(0)/f(φ). As such, one could understand Assumption 3.1(a) as controlling the degree of

persistence. But I stress that one is not committing to any parametric classes under this

assumption, even if f is defined from a parametric model. For example, suppose f is the

normalized spectrum of an AR(1) model with coefficient 0.8. Then, the resulting F not

only covers all stationary AR(1) models with coefficient less than 0.8, but it also arguably

contains many other empirically relevant models, such as all MA(1) models and ARMA

models whose normalized spectra may oscillate but are above f .

Assumption 3.1(a) is satisfied by common function classes assumed in the nonparametric

inference literature. For example, when F is the class in which the first derivative of the log

spectrum is bounded in magnitude by a positive constant C, the corresponding “uniformly

minimal” function emerges as f(φ) = exp(−Cφ). In addition, only the evaluations of f at

frequencies πj/T, j = 0, 1, . . . , T − 1 matter in the diagonal model (8). Assumption 3.1(a)

can thus be further weakened to a lower bound assumption on each of f(πj/T ).

Assumptions 3.1(b) and (c) regularize F , such that the least favorable distribution over

F exists and puts a point mass on an element in it. Inspection of the proof of Theorem 3.2

shows that Assumptions 3.1(b) is sufficient and may not be necessary.12 But I stress that,

even so, one is not committing to a shape restriction for all spectra in F . Furthermore,

a stronger monotonicity assumption on f , that is, it is non-increasing not only at λ =

πj/T, j = 0, 1, . . . , T − 1, but also over [−π, π], is often satisfied in the above smoothness

classes F . Thus, given Assumption 3.1(a), Assumptions 3.1(b) is arguably fairly mild.

12I note that this assumption may need to be amended accordingly, if power is directed at other fixed

alternative f̃1. See Appendix A, especially Lemma A.11 for more details.
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3.1 Optimal test

The optimal HAR test in the diagonal model is stated in the following theorem.

Theorem 3.2 Let F be a set of f satisfying Assumption 3.1 with the “uniformly minimal”

function f , and for a given κ that specifies a weighted average power criterion,

1. If f(π/T ) ≤ κ−1, then the best weighted average power maximizing scale invariant test of

H0 : µ = 0 against H1 : µ 6= 0 is the trivial randomized test.

2. If f(π/T ) > κ−1, then the best level α weighted average power maximizing scale invariant

test ϕ∗ of H0 : µ = 0 against H1 : µ 6= 0 rejects for large values of

Y 2
0 +

∑q∗

j=1 Y
2
j /f(πj/T )

Y 2
0 + κ

∑q∗

j=1 Y
2
j

(10)

for a unique 1 ≤ q∗ ≤ T − 1, and with the critical value cvq∗ such that the test is of level

α under f = f .

The proof of part 1 of Theorem 3.2 is simple. Notice that for a given κ, if f(π/T ) ≤
κ−1, then the alternative H ′′1,f1 is included in the null Hd

0 . As a result, any nontrivial size-

controlling test cannot be more powerful than the trivial randomized test.

The idea of the proof for part 2 of Theorem 3.2 is to conjecture and verify that the least

favorable distribution Λ∗ puts a point mass on a function in F . The logic is as follows.

Suppose the conjecture is true and Λ∗ concentrates on the function f ∗. By the Neyman-

Pearson lemma, the optimal test of H ′′0,Λ∗ against H ′′1,f1 in the diagonal model is

ϕΛ∗,f1 = 1

[
Y 2

0 +
∑T−1

j=1 Y
2
j /f

∗(πj/T )

Y 2
0 + κ

∑T−1
j=1 Y

2
j

> cv

]
,

for some cv ≥ 0. On the other hand, as discussed in Section 2, for Λ∗ to be the least favorable

distribution, one needs ϕΛ∗,f1 to uniformly control size under H ′′0 . Intuitively, this requires

H ′′0,Λ∗ to be as indistinguishable as possible from H ′′1,f1 . This somewhat implies that the

function f ∗ must mimic the discontinuous function of φ as f ∗1 (φ) = κ−11[φ 6= 0] + 1[φ = 0].

As illustrated by Figure 2, the function f ∗ must then be kink-shaped, given the presence of

f . I further show that the optimal location of the kink in f ∗ in conjunction with the resulting

cv is equivalent to ignoring Yj with index j > q∗. This then gives rise to the optimal test

statistic (10). The formal proof of Theorem 3.2 is given in Appendix A.
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Figure 2: Illustration of the least favorable distribution of Hd
0 against Hd

1,f1
as a point mass

on f ∗.
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Notes: The “uniformly minimal” function f is the normalized spectrum of an AR(1) model with coefficient

0.8. I use κ = 11 for f∗1 . Sample size T is 100.

3.1.1 Discussion

Comment 1. Theorem 3.2 shows that we can only be confident about a HAR test if we

are willing to make a priori assumptions about the persistence properties of the data. Fur-

thermore, it gives an explicit recipe for doing optimal testing as a function of the underlying

primitive, namely the spectral densities one is willing to consider (without some assumption

on the possible spectra, informative inference is impossible, as shown by Pötscher (2002)).

Comment 2. The optimal test (10) can be rewritten as∣∣∣∣∣∣ Y0√∑q∗

j=1 wjY
2
j

∣∣∣∣∣∣ > 1, (11)

where the weight wj depends on κ, f(πj/T ) and cvq∗ . This implies a (inconsistent) LRV

estimator
∑q∗

j=1wjY
2
j . Note that I do not start by restricting the class of LRV estimators, yet

a weighted orthornormal series estimator emerges. Moreover, by construction, this estimator

endogenously adjusts the number of included weighted averages and the weights wj’s to the

class of spectra under consideration, in order to optimally trade off variability and the largest

possible bias. This is different from the majority of the literature, which otherwise exploits

flatness of the spectrum close to the origin.

12



Comment 3. I first note that, with all positive weights wj’s, the null rejection probability

of test (11) is maximized at f . But, for given κ and f , and as q∗ varies, the critical value cvq∗

(determined by the level constraint at f) and the resulting weights wj’s change accordingly.

In particular, inspection of the proof reveals that, as q∗ increases, negative weights wj’s

might emerge, in which the null rejection probability of test (11) is no longer maximized at

f (test (11) no longer controls size). But one may desire to use a larger q∗ for power purpose.

It turns out that there exists a unique q∗ such that the resulting test (11) (with all positive

weights wj) maximizes weighed average power, and uniformly controls size over F ,

Two remarks are in order: First, for a given κ, a larger q∗ would not emerge from a

steeper f , since it is then more likely to induce a negative wj, or it is harder to control size

over a “larger” F . Second, q∗ is an implication here, not an assumption. Said differently, I

do not start by restricting attention to the class of tests as functions of
(
Y s

1 , . . . , Y
s
q∗

)′
. In

contrast, the approach taken by Müller (2014) assumes some fixed q as the starting point.

Comment 4. One may wonder whether the notion of optimality here is limited in the sense

that power is directed at flat spectrum f1. But I note that Theorem 3.2 can be adapted to deal

with other possibly more complex alternatives. In particular, with appropriate modifications

of Assumption 3.1, Theorem 3.2 can be adapted to the problem of Hd
0 against Hd

1,f̃1
for

other fixed alternative f̃1. In that case, the resulting q∗ is also f̃1-dependent. Furthermore,

Theorem 3.2 can be generalized to a minimax result, in which f belongs to a nonparametric

class G ⊂ F under H1. In that case, a “uniformly maximal” function in F must be properly

defined as f in Assumption 3.1. For the sake of brevity, I omit the details in this paper.

Comment 5. The combination of Assumption 3.1 and the diagonal model (8) induces

less general yet arguably useful correlation structures relative to the largest possible set

allowed by Pötscher and Preinerstorfer (2018, 2019). In particular, Assumption 3.1(a) implies

an “upper bound” on persistence, which partially reduces the set of concentration spaces

considered by Preinerstorfer and Pötscher (2016) and Pötscher and Preinerstorfer (2018,

2019). Yet their negative results may still apply.

But the diagonal structure (8) essentially facilitates analytical tractability in analyzing

rejection probabilities of positively weighted orthornormal series HAR tests (the largest size

distortion appears at the known f under Assumption 3.1(a)), which include but are not

limited to the derived optimal test as (11) and the EWC test considered below. In this

way, I have implicitly handled the singularity points in Preinerstorfer and Pötscher (2016)

and Pötscher and Preinerstorfer (2018, 2019), and thus controlled size and established an

optimality result following an extra least favorable argument.
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3.1.2 Computational considerations

The existence and uniqueness result of q∗ in Theorem 3.2 naturally brings computational

convenience in practice. For example, for a given F satisfying Assumption 3.1, one can appeal

to the bisection method to locate q∗. In my implementations, this takes little computing

time by using the simple algorithm in Appendix B.1. Moreover, the corresponding critical

value cvq∗ can easily be determined due to the formula of Bakirov and Székely (2006):

P

(
Z2

0 ≥
n∑
j=1

ζjZ
2
j

)
=

2

π

∫ 1

0

(1− u2)(n−1)/2du√∏n
j=1(1− u2 + ζj)

, (12)

where {Zj}nj=0 are n + 1 i.i.d. standard normal random variables and ζj ≥ 0, j = 1, . . . , n.

By the t-statistic expression (11), part 2 of Theorem 3.2, and (12), the level α constraint for

the optimal test becomes

P

(
Z2

0∑q∗

j=1 wjf(πj/T )Z2
j

> 1

)
=

2

π

∫ 1

0

(1− u2)(q∗−1)/2du√∏q∗

j=1(1− u2 + wjf(πj/T ))
= α, (13)

where wj =
[
κ cvq∗ −1/f(πj/T )

]
(1− cvq∗)

−1 is strictly monotone in cvq∗ under Assumption

3.1. The critical value cvq∗ is then readily determined by solving equation (13). Computa-

tional details are provided in Appendix B.2.

3.2 The optimal EWC test

By using higher-order expansions, Lazarus, Lewis, and Stock (2019) derive a size-power

frontier for kernel and orthornormal series HAR tests under an asymptotic framework. The

EWC test is shown to achieve that frontier in their context. It is, however, not clear how

the EWC test performs in finite-sample contexts and in the unrestricted class of tests. The

optimal HAR test derived in the last section provides a natural benchmark to gauge the

performance of an ad hoc test. In this section I take up the EWC test as the ad hoc test

and discuss its properties.

I have three related goals. The first is to study the (weighted average) power properties

of the EWC test relative to the optimal test in Theorem 3.2. As it turns out, the EWC test

is close to optimal, under an appropriate choice of q and with the adjusted critical value.

Given the efficiency property of this new EWC test, the second goal is to develop simple

procedures to implement the test. I discuss the two goals in reverse order, first elaborating

on critical value adjustment and optimal choice of q for the EWC test, and then studying
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the power of the resulting test. My last goal is to compare the practical implications of the

new EWC test with the conventional wisdom, that is, to choose a sufficiently small q and use

the Student-t critical value. The general takeway from the comparison is: One should use

the EWC test with a larger q and appropriately enlarged critical values for more powerful

HAR inference.

To clarify ideas and illustrate points in a consistent manner, I use the following running

example throughout this section: Under the null, the “uniformly minimal” function f of the

class F corresponds to an AR(1) with coefficient 0.8; sample size T is fixed to be 100. In

addition, I will frequently refer to the following two types of classes. For the first type, the

“uniformly minimal” function of F is the normalized spectrum of an AR(1) with coefficient

ρ. For the second type, all spectra in F satisfy a global smoothness assumption, that is, the

first derivative of the log-spectrum log(f) is bounded in magnitude by a constant C.

3.2.1 Critical value adjustment and choice of q

The diagonal model (8) makes it easy to adjust the critical value for a given class F . In

particular, for a given f ∈ F , the null rejection probability of the EWC test (1) using the

critical value cv is

P

∣∣∣∣∣∣ Y0√∑q
j=1 Y

2
j /q

∣∣∣∣∣∣ ≥ cv

 = P

(
Z2

0

q−1 cv2
∑q

j=1 f(πj/T )Z2
j

≥ 1

)
, (14)

where {Zj}qj=0 are q+ 1 i.i.d. standard normal random variables. Under Assumption 3.1(a),

it is not hard to see that (14) as a functional of f is maximized at f , regardless of the choice

of q and the critical value cv. Two implications are immediate. First, for the testing problem

(9) under a given F , it is easy to gauge the size performance of any ad hoc EWC test. In

the context of the running example, Table 3 shows the size of the 5% EWC test using the

Student-t critical value under selected choices of q. As can be seen, for size distortions less

than 0.01, one needs to use q = 3 in the usual EWC test.

Second, by Bakirov and Székely’s (2006) formula (12), it is easy to adjust the critical

value of the EWC test under any ad hoc q. Specifically, as in solving for the critical value

of the optimal test in Section 3.1.2, the adjusted critical value cvaq of the level α EWC test

under given q is obtained by inverting the following level constraint:

P

(
Z2

0

q−1(cvaq)
2
∑q

j=1 f(πj/T )Z2
j

≥ 1

)
=

2

π

∫ 1

0

(1− u2)(q−1)/2du√∏q
j=1(1− u2 + q−1(cvaq)

2f(πj/T ))
= α.

(15)
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Table 3: Size of the 5% level EWC test using Student-t critical values under selected q.

q 3 4 6 8 10

size 0.056 0.061 0.073 0.089 0.107

Notes: The “uniformly minimal” function of F corresponds to an AR(1) with coefficient 0.8. Sample size T

is 100.

Table 4: Adjustment factor of the Student-t critical value and weighted average power of 5%

level EWC test under selected q.

q 3 4 5 6 7 8 9 10

adjustment factor 1.044 1.068 1.096 1.126 1.158 1.191 1.225 1.259

weighted average power 0.390 0.422 0.434 0.438 0.436 0.431 0.425 0.417

Notes: The “uniformly minimal” function of F corresponds to an AR(1) with coefficient 0.8. Sample size T

is 100.

In the context of the running example, the first row in Table 4 summarizes the adjustment

factor of the resulting adjusted critical value relative to the Student-t critical value under

various q. As can be seen, in order to explicitly account for the resulting downward bias of

the LRV estimator
∑q

j=1 Y
2
j /q, one must inflate the usual Student-t critical value by a factor

larger than 1.

Now consider the choice of q in the EWC test. Under given q and using the adjusted

critical value cvaq , the weighted average power of the resulting EWC test is

P

(
Z2

0

q−1κ−1(cvaq)
2
∑q

j=1 Z
2
j

≥ 1

)
=

2

π

∫ 1

0

(1− u2)(q−1)/2du√∏q
j=1

(
1− u2 + q−1κ−1(cvaq)

2
) . (16)

The weighted average power (16) can easily be computed for every q. Under a given F and

nominal level α, the optimal choice of q for the EWC test is then defined as the one such

that the resulting EWC test has the largest weighted average power. I refer to the EWC

test under the optimal choice of q and with the adjusted critical value as the optimal EWC

test. I stress that the notion of “optimality” for this new EWC test is with respect to the

assumptions on the underlying spectrum, that is, the class F .
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Table 5: Weighted average power (WAP) of the optimal test and the optimal EWC test.

ρ 0.50 0.60 0.70 0.80 0.90 0.95 0.98 0.99

WAP of optimal test 0.506 0.493 0.475 0.441 0.357 0.236 0.089 0.051

WAP of optimal EWC 0.504 0.491 0.472 0.438 0.353 0.233 0.089 0.051

Notes: The “uniformly minimal” function of F corresponds to an AR(1) with coefficient ρ. Nominal level is

5%. Sample size T is 100.

Table 6: Weighted average power (WAP) of the optimal test and the optimal EWC test.

C 10.0 5.6 3.2 1.8 1.0 0.6 0.2 0.1

WAP of optimal test 0.290 0.365 0.419 0.458 0.485 0.504 0.527 0.534

WAP of optimal EWC 0.286 0.361 0.415 0.454 0.482 0.501 0.526 0.533

Notes: The “uniformly minimal” function of F is f(φ) = exp(−Cφ). Nominal level is 5%. Sample size T is

100.

3.2.2 Power of the optimal EWC test

Tables 5 and 6 summarize the weighted average power of the optimal EWC test and the

corresponding optimal test under the aforementioned two types of classes F , respectively.

As can be seen, the optimal EWC test is nearly as powerful as the optimal test, regardless

of the underlying F within the two types of classes. In unreported numerical results, under

the second-order Hölder class F , the near optimality property of the optimal EWC test

continues to hold.

3.2.3 Practical implications

Recall that the conventional wisdom is to use a sufficiently small q and to employ the

Student-t critical value. I find, however, that it is optimal to use a larger q and to employ

an enlarged critical value. Take the running example as an illustration. As explained earlier,

for size distortions less than 0.01, one needs to use q = 3 in the usual EWC test in which the

Student-t critical value is employed. However, as highlighted in Table 4, the optimal EWC

test has a larger q = 6, and the corresponding Student-t critical value must be inflated by

a factor of 1.13 for exact size control. To ensure an apples-to-apples comparison, I compute

the size-adjusted weighted average power of the usual EWC test using q = 3. In contrast to

the optimal EWC test, this EWC test has about 11% weighted average power loss.
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Figure 3: Power function plot of the test ϕ∗, the optimal EWC test, and the size-adjusted

EWC test using q = 3.
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(b) ρ1 = 0.8.

Notes: Under the alternative, the mean of yt is δT−1/2(1 − ρ1)−1 and yt follows a Gaussian AR(1) with

coefficient ρ1. Under the null, the f of F corresponds to an AR(1) with coefficient 0.8. Sample size T is 100.

The superior power property of the optimal EWC test is further evident when local

alternatives are considered. In particular, in the context of the running example, I consider

µ = δT−1/2(1− ρ1)−1 under the alternative. Panels (a) and (b) of Figure 3 plot the power of

the test ϕ∗, the optimal EWC test, and the size-adjusted EWC test using q = 3 for various

δ under ρ1 = 0 and ρ1 = 0.8, respectively. As can be seen in panel (a), even though the

optimal EWC test underrejects under the null, it is more powerful than the EWC test using

q = 3 in detecting local deviations from the null. Specifically, by using the optimal EWC

test, a 32.0% efficiency improvement is obtained in order to achieve the same power of 0.5.

In the case in which ρ1 = 0.8, the efficiency gain is larger (48.7%), since the optimal EWC

test then exactly controls size by construction. Furthermore, given that the optimal EWC

test is numerically found to be nearly as powerful as the overall optimal test ϕ∗ in terms of

weighted average power under the white noise alternative, it is not surprising to see that the

power functions of these two tests are almost identical.
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3.3 A Rule of thumb

As a practical matter, one might like to estimate the smoothness class F from data.

Unfortunately, the attempt is not useful. This is because the (nearly) optimal test depends

on F , and a “larger” F leads to a lower power. As a result, one cannot estimate F and

still control size (cf. Pötscher (2002)). In implementations of the EWC test, if q is chosen

by some other approach, it still makes sense to adjust the Student-t critical value given the

previous analysis of the optimal EWC test. As a rule of thumb, I suggest that practitioners

implement the EWC test and adjust the Student-t critical value according to Table 2. In

detail, the suggested test about the population mean H0 : µ = µ0 of an observed scalar time

series {yt}Tt=1 is computed as follows.

1. Compute the T cosine weighted averages of {yt}Tt=1 : Y0 = T−1
∑T

t=1(yt − µ0) and Yj =

T−1
√

2
∑T

t=1 cos(πj(t− 1/2)/T )yt, j = 1, 2, . . . , T − 1.

2. For the researcher’s choice of q, compute the t-statistic tY,q = Y0/
√
q−1
∑q

j=1 Y
2
j .

3. Reject the null hypothesis at level α if |tY,q| > Bα,q cvnaq (α), where cvnaq (α) is the Student-

tq critical value and Bα,q is the adjustment factor as in Table 2.

As explained in the introduction, the adjustment factors in Table 2 are calibrated based

on a series of classes F in which the “uniformly minimal” function is the normalized spectrum

of an AR(1) with coefficient ρ = 1− c/T for T = 100. I make two additional remarks. First,

there may be multiple c (ρ) such that the same optimal q emerges, under the respective F .

Second, the adjustment factor for each q does not change substantially under other types of

smoothness classes. Two sets of tables similar to Tables 1 and 2 are provided in Appendix

C, in which the class F imposes some global smoothness assumption on the spectrum. For

these reasons, one should take Table 2 as rule of thumb. Table 1 serves as one illustration of

the underlying smoothness class F , under which the q and adjustment factor are justified.

4 Nearly Optimal HAR Inference in the Exact Model

The discussions in Section 3 are entirely based on the diagonal model (8). For both

theoretical interest and practical relevance, it is natural to ask whether the insights on

optimal HAR inference in the diagonal model continue to hold in the exact model (5).

This section is devoted to addressing that problem. In particular, I continue restricting

attention to scale invariant tests of H0 : µ = 0 against H1 : µ 6= 0 that maximize weighted
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average power over µ and direct power at the flat spectrum f1. Under the weighted average

power criterion, as specified by a given κ, the goal is to seek powerful tests as functions of

Y s = Y/
√
Y ′Y in the problem of

He
0 : Y ∼ N (0,Ω0(f)) , f ∈ F (17)

against He
1,f1

: Y ∼ N
(
0, κT−1diag(1, κ−1, . . . , κ−1)

)
,

where the superscript e denotes the exact model.

First of all, I note that it is in general difficult to derive the optimal test of (17) under

Assumption 3.1. This is mainly due to the complicated manner by which f enters Ω0(f). In

detail, a direct calculation shows that for a given f and j, k = 0, 1, . . . , T − 1,

Ω0(f)j,k =

∫ πT

−πT
f

(
λ

T

)
wj,k(λ)dλ with (18)

wj,k(λ) =

(
T−1

T∑
s=1

ϕj

(
s− 1/2

T

)
e−

isλ
T

)(
T−1

T∑
t=1

ϕk

(
t− 1/2

T

)
e

itλ
T

)
,

where ϕj(φ) =
(√

2
)1[j 6=0]

cos(πjs), 0 ≤ φ ≤ 1. In this case, even if it is true that the least

favorable distribution of (17) puts a point mass on some function f ∗ ∈ F , the determination

of f ∗ seems very diffcult. Alternatively, one may want to impose additional assumptions on

F such that Ω0(f) = T−1diag (f(0), . . . , f(π(T − 1)/T )) holds uniformly in f ∈ F . The task

is also hard, since one must then solve (T 2 +T )/2 functional constraints, that is, Ω0(f)j,k = 0

for every j > k and Ω0(f)i,i = f(πi/T ) for every i.

Despite the difficulty in analytically deriving the exact optimal test of (17), one still can

obtain bounds on the power of any size-controlling test by using the bounding approach of

Elliott, Müller, and Watson (2015). Recall from Section 2 that for any probability distri-

bution Λ over F , the likelihood ratio test of H ′′0,Λ against H ′′1,f1 yields such a power bound.

Suppose there exists an ad hoc test ϕah that is known to control size. If the power of ϕah

is close to the power bound for some Λ, then ϕah is known to be close to optimal, as no

substantially more powerful test exists. It turns out that the insights from the diagonal

model are useful in guessing a good Λ and in justifying the near optimality of the EWC test

in the exact model. In particular, for a given a in [0, 1], let Λa be a point mass distribution

on the kinked function fa(φ), as was defined in Assumption 3.1. As argued above, for every

a, the likelihood ratio test of H ′′0,Λa against H ′′1,f1 yields a power bound. I then numerically

search for a such that the resulting power bound is minimized. Denote this a by a† and the

resulting Λ by Λ†. The power bound I employ to gauge potential efficiency of the EWC test
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is then the power of

ϕΛ†,f1 = 1
[
(Y ′Ω0(fa†)Y )

−1
(Y ′Ω1(f1)Y ) > cv

]
, (19)

for some cv such that E[ϕΛ†,f1 ] = α under H ′′0,Λa . In the following subsection, I show that

the EWC test essentially achieves this bound, after optimal choice of q and critical value

adjustment.

To clarify ideas and illustrate points in a consistent manner, I continue using the running

example introduced in Section 3.2. I also use the two types of smoothness classes introduced

there, except that for the first type I additionally assume every f ∈ F to be non-increasing

over [0, π].13

4.1 The optimal EWC test

I discuss the EWC test in the exact model in the following three steps. First, given

the aforementioned efficiency property of the EWC test, I elaborate on how to make the

critical value adjustment and choose the q for the EWC test in the exact model. Second, I

use numerical exercises to study the power of the resulting EWC test. Third, as was done

in Section 3, I compare practical implications of the new EWC test with the conventional

wisdom. The general takeaway remains: One should use the EWC test with a larger q and

appropriately enlarged critical values for more powerful HAR inference. Lastly, as a practical

matter, I note that there is no substantial change in the adjustment factor of the Student-t

critical value, even if the adjustment is made in the exact model.

4.1.1 Critical value adjustment and choice of q

I first note that, unlike in the diagonal case, there is no analytical expression to adjust

the critical value for the EWC test in the exact model. To be precise, at given f ∈ F , the

null rejection probability of the EWC test under given q and with the critical value cv is

P

∣∣∣∣∣∣ Y0√∑q
j=1 Y

2
j /q

∣∣∣∣∣∣ ≥ cv

 = P

(
Z2

0

q−1 cv2
∑q

j=1 λj(f)Z2
j

≥ 1

)
, (20)

where {Zj}qj=0 are q + 1 i.i.d. standard normal random variables. The λj(f), j = 1, . . . , q in

(20) are the normalized positive eigenvalues of Ω0,q(f)1/2M(cv, q)Ω0,q(f)1/2 (normalized by

13The following numerical results suggest that the monotonicity assumption may sufficiently handle the

singularity points in Preinerstorfer and Pötscher (2016) and Pötscher and Preinerstorfer (2018, 2019), even

if the diagonal structure (8) is not imposed.
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the absolute value of the only negative eigenvalue), where Ω0,q(f) is the upper left (q+ 1)×
(q + 1) block matrix of Ω0(f) and M(cv, q) = diag (−1, cv2 /q2, cv2 /q2, . . . , cv2 /q2). It is

known from Section 3 that (20) as a functional of f is maximized when all λj(f)’s are jointly

minimized. The opaque mapping from λj(f) back to f , however, prevents us from explicitly

identifying the null rejection probability maximizer(s) like f in the diagonal model.

A natural reaction to this obstacle is to search for the null rejection probability maximizer

numerically. To render this feasible, I approximate f ∈ F as a linear combination of basis

functions. The original task is then transformed into a high-dimensional optimization prob-

lem. To be more precise, let the n+ 1 node points {xi}ni=0 define a partition of the interval

I = [0, π] into n subintervals Ii = [xi−1, xi], i = 1, 2, . . . , n, each of length hi = xi − xi−1,

and x0 = 0, xn = π. Let C0(I) denote the space of continuous functions on I, and P1(Ii)

denote the space of linear functions on Ii. Let {ςi}ni=0 be a set of basis functions for the space

Fh of continuous piecewise linear functions defined by Fh = {f : f ∈ C0(I), f |Ii ∈ P1(Ii)}.
The basis functions {ςi}ni=0 are normalized such that ςj(xi) = 1[i = j], i, j = 0, 1, . . . , n. By

approximating f via f̂ =
∑n

i=0 f(xi)ςi and by (12), I approximate the rejection probability

(20) by

P

(
Z2

0

q−1 cv2
∑q

j=1 λj(f̂)Z2
j

≥ 1

)
=

2

π

∫ 1

0

(1− u2)(q−1)/2du√∏q
j=1

(
1− u2 + q−1 cv2 λj

(
f̂
)) , (21)

which is a function of the n-dimensional vector (f(x1), f(x2), . . . , f(xn))′. (By normalization,

f(x0) = 1.) With pre-computed {Ω0(ςi)}ni=0 based on (18), the computation of (21) takes

very little computing time for each f̂ , and it is feasible to obtain a global maximizer of (21)

subject to implied constraints on (f(x1), f(x2), . . . , f(xn))′ from a given F . Denote the λj’s

at one of those global maximizers by {λ∗j}
q
j=1. The adjusted critical value cva,eq is then readily

determined by inverting

2

π

∫ 1

0

(1− u2)(q−1)/2du√∏q
j=1

(
1− u2 + q−1(cva,eq )2λ∗j

) = α,

just like solving (15) in the diagonal model. I provide more computational details on numer-

ically locating the null rejection probability maximizer in Appendix D.

In the context of the running example, I additionally assume that the underlying spectrum

is non-increasing over [0, π]. Table 7 lists the resulting cva,eq and cvaq under selected q. As can

be seen, the difference between these two adjusted critical values is slight. More intuitively,

for those cases considered, the largest size distortion of 5% level EWC test using cvaq is 0.003
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Table 7: Diagonal model based cvaq , exact model based cva,eq , and weighted average power

(WAP) of 5% level EWC test using cva,eq .

q 3 4 5 6 7 8 9 10

cvaq 3.322 2.966 2.817 2.756 2.739 2.747 2.772 2.806

cva,eq 3.392 3.022 2.868 2.800 2.780 2.783 2.804 2.835

WAP 0.382 0.414 0.427 0.431 0.430 0.426 0.420 0.413

Notes: The “uniformly minimal” function of F corresponds to an AR(1) with coefficient 0.8. All f in F are

non-increasing over [0, π]. Sample size T is 100.

in the exact model. All of these suggest that it is nearly without loss of generality to adjust

the critical value by following the simple and straightforward rule as in Section 3.2.1. What’s

more, in the context of the rule of thumb in Section 3.3, there is no substantial change in

the suggested adjustment factor, making it a more robust rule of thumb to follow.

Now consider the choice of q in the EWC test. I note that since the alternative hypothesis

of (17) is identical to that of (9), one can proceed as in Section 3.2.1 to choose the optimal q

such that the resulting EWC test has the largest weighted average power. The only difference

is that one must replace the adjusted critical value cvaq by cva,eq in (16). I refer to the EWC

test under the optimal choice of q and with the adjusted critical value cva,eq as the optimal

EWC test for the rest of this section.

4.1.2 Power of the optimal EWC test

Table 8 and 9 summarize the weighted average power of the optimal EWC test and the

weighted average power bound induced by (19), under the two types of classes described in

the beginning of Section 4, respectively. As can be seen, for most F under consideration, the

optimal EWC test essentially achieves the corresponding weighted average power bound. In

the spirit of Lemma 1 in Elliott, Müller, and Watson (2015), the optimal EWC test is then

known to be nearly optimal. The numerical findings also imply that the insights from the

diagonal model continue to be useful in the exact model, even if the analysis of the overall

optimal test is hard. I note that the relatively larger difference between the weighted average

power of the optimal EWC test and the corresponding bound (e.g., under large ρ in Table

8 and under large C in Table 9) is not informative about the efficiency of the optimal EWC

test, since it can arise either because the bound is far from the least upper bound, or because

ϕah is inefficient.
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Table 8: A bound on weighted average power (WAP) and the WAP of the optimal EWC

test.

ρ 0.50 0.60 0.70 0.80 0.90 0.95 0.98 0.99

WAP of optimal EWC 0.502 0.488 0.467 0.431 0.344 0.231 0.096 0.071

WAP bound 0.505 0.492 0.473 0.438 0.361 0.257 0.132 0.088

Notes: The “uniformly minimal” function of F corresponds to an AR(1) with coefficient ρ. All f in F are

non-increasing over [0, π]. Nominal level is 5%. Sample size T is 100.

Table 9: A bound on weighted average power (WAP) and the WAP of the optimal EWC

test.

C 10.0 5.6 3.2 1.8 1.0 0.6 0.2 0.1

WAP of optimal EWC 0.307 0.372 0.422 0.458 0.484 0.503 0.527 0.534

WAP bound 0.323 0.382 0.428 0.463 0.488 0.506 0.528 0.534

Notes: The “uniformly minimal” function of F is f(φ) = exp(−Cφ). Nominal level is 5%. Sample size

T = 100.

4.1.3 Further remarks on the practical implications

The practical implication on using the EWC test from the diagonal model continue to

hold. In the context of the running example, for size distortions less than 0.01 in the exact

model, one must use q = 3 in the usual EWC test. As highlighted in Table 7, the optimal

EWC test has a larger q = 6. Moreover, one must enlarge the corresponding Student-t

critical value by a factor of 1.15 for exact size control. In terms of weighted average power,

there is a 13% gain by using the optimal EWC test. This efficiency advantage is further

evident when the local alternative µ = δT−1/2(1 − ρ1)−1 is considered. Panels (a) and (b)

of Figure 4 plot the power of ϕΛ†,f1 as in (19), the optimal EWC test, and the size-adjusted

EWC test using q = 3 for various δ under ρ1 = 0 and ρ1 = 0.8, respectively. To achieve the

same power of 0.5, there is a 38.1% and 71.1% efficiency gain by using the optimal EWC

test under ρ1 = 0 and ρ1 = 0.8, respectively.
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Figure 4: Power function plot of the optimal EWC test, the size-adjusted EWC test using

q = 3, and the weighted average power bound induced test ϕΛ†,f1 .
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(b) ρ1 = 0.8.

Notes: Under the alternative, the mean of yt is δT−1/2(1 − ρ1)−1 and yt follows a Gaussian AR(1) with

coefficient ρ1. Under the null, The “uniformly minimal” function of F corresponds to an AR(1) with

coefficient 0.8. Sample size T = 100.

5 Monte Carlo Simulations

The purpose of this section is twofold. First, I assess size and power performance of the

suggested optimal EWC test relative to other approaches to HAR inference in the Gaussian

location model. Second, I investigate the extent to which the theory derived in the Gaussian

location model generalizes to inference about a scalar parameter of interest in a regression

context.

I compare 18 tests in total. For the EWC test using the Student-t critical value, I con-

sider q = 4, 8, 12, 24. For the optimal EWC test, labeled OEWC, I consider q = 3, 6, 8, 10, 20.

According to Table 1, these q’s are the optimal choices for 5% level EWC test, under the

class F in which the “uniformly minimal” function is the normalized spectrum of an AR(1)

with coefficient 0.95, 0.82, 0.70, 0.60, and 0.23, respectively for T = 100. In addition, I

consider Müller’s (2014) Sq test with q = 12, 24, 48; Ibragimov and Müller’s (2010) test with

8 and 16 groups, IM8 and IM16; the classical approach based on two consistent LRV estima-

tors: Andrews’s (1991) LRV estimator ω̂2
A91 with a quadratic spectral kernel and bandwidth

selection using an AR(1) model, and Andrews and Monahan’s (1992) LRV estimator ω̂2
AM,

in which an AR(1) model is used in prewhitening; and two HAR tests based on inconsistent
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LRV estimators: Kiefer, Vogelsang, and Bunzel’s (2000) Bartlett kernel estimator ω̂2
KVB with

bandwidth equal to the sample size, and Sun, Phillips, and Jin’s (2008) quadratic spectral

estimator ω̂2
SPJ with a bandwidth that trades off asymptotic type I and type II errors in

rejection probabilities, in which the shape of the spectrum is approximated by an AR(1)

model and the weight parameter is chosen to be 30.

In all simulations, the sample size is T = 100. The first set of simulations concerns

inference about the mean of a scalar time series. In the “Gaussian AR(1)” design, the data

are generated from a stationary Gaussian AR(1) model with coefficient ρ and unit innovation

variance. The second set of simulations concerns inference about the coefficient on a scalar

nonconstant regressor. In the “scalar nonconstant regressor” design, the regressions

Rt = β0 + xtβ1 + ut, E[ut|xt−1, xt−2, . . .] = 0, t = 1, . . . , T

contain a constant β0, and the nonconstant regressor xt and the regression disturbances ut

are independent zero mean Gaussian AR(1) processes with common coefficient ρ and unit

innovation variance. Under the null, the coefficient β1 is hypothesized to be zero.

Except for the three Sq tests, I compute the test statistics based on

ŷt = b′Σ̂−1
X Xtût, (22)

where Σ̂X = T−1
∑T

t=1XtX
′
t with Xt = (1, xt)

′, b = (0, 1)′, and ût = Rt − β̂0 − xtβ̂1 with

(β̂0, β̂1)′ being the ordinary least squares (OLS) estimator for (β0, β1). For the three Sq tests,

I follow Section 5 in Müller (2014) to use

ỹt = b′Σ̂−1
X Xtût +

b′Σ̂−1
X XtX

′
tΣ̂
−1
X b

b′Σ̂−1
X b

β̂1,

where b, Xt, Σ̂X , and β̂1 are the same as in (22).

Table 10 reports size and size-adjusted power of the 18 tests in the “Gaussian AR(1)”

design. The size adjustment is performed on the ratio of the test statistic and the criti-

cal value to ensure that data-dependent critical values are appropriately subsumed in the

effective test. Not surprisingly, the optimal EWC test almost exactly controls size in the

data generating process (DGP) that coincides with the “uniformly minimal” function of the

underlying smoothness class. This can be seen in the cases of OEWC3 under ρ = 0.95 and

OEWC8 under ρ = 0.7. Moreover, though the class of OEWCq tests is known to essentially

maximize weighted average power over µ under white noise, they also have better power

performance relative to other tests when the underlying persistence is not negligible. For

example, both the OEWC3 test and the S24 control size under ρ = 0.95, but the size-adjusted
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power of OEWC3 is 140% larger; the OEWC6 test and the KVB test have roughly the same

size distortions under ρ = 0.95, but the size-adjusted power of OEWC6 is 36% larger.

In the “scalar nonconstant regressor” design, let yt = b′Σ−1
X Xtut, where ΣX is the prob-

ability limit of Σ̂X under suitable regularity conditions. The time series yt is not Gaussian.

On the other hand, the optimal EWC tests are based on the observable series ŷt which, as

argued by Müller (2014), behaves like yt − T−1
∑T

s=1 ys asymptotically. Despite the non-

Gaussianity of the underlying time series, the optimal EWC tests, as reported in Table 11,

continue to control size well and have better power performance relative to most alternative

approaches. I note that the exceptional size and power performance of the IMq test in Table

11 is specific to the design and explained by Müller.

6 Conclusion

This paper considers optimal HAR inference in finite-sample contexts. The driving as-

sumption is that the normalized spectrum of the underlying time series lies in a smoothness

class, which possesses a “uniformly minimal” function. Under this assumption, I establish a

finite-sample optimal theory of HAR inference in the Gaussian location model. The optimal

test trades off bias and variability, and requires an adjustment of the critical value to account

for the maximum bias of the implied long-run variance estimator. I find that the EWC test

is close to optimal, but one must make an adjustment to the usual Student-t critical value

and choose an optimal q accordingly. Both the critical value adjustment and the choice of q

depend on assumptions on the spectrum. The main implication of my findings is that when

the goal is powerful HAR inference, it is advantageous to allow for bias in LRV estimation

and adjust the critical value to explicitly account for the maximum bias.
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Table 10: Small sample performance for inference about population mean

ρ EWC4 EWC8 EWC12 EWC24 OEWC3 OEWC6 OEWC8 OEWC10 OEWC20

Panel A: Size under Gaussian AR(1)

0.0 5.0 5.0 5.0 5.0 1.6 3.3 3.6 4.0 4.4

0.7 5.7 6.8 8.7 15.4 1.8 4.2 5.1 6.3 12.1

0.9 9.4 17.7 25.1 40.1 2.7 9.9 14.6 19.3 34.7

0.95 17.3 32.4 42.0 57.0 4.9 20.8 28.6 35.0 52.1

0.98 36.3 54.4 62.6 73.5 13.4 42.4 50.9 57.0 70.1

0.999 83.3 89.7 91.9 94.5 68.5 85.9 88.7 90.5 93.7

Panel B: Size-adjusted power under Gaussian AR(1)

0.0 34.0 41.9 45.0 47.9 29.0 38.6 41.9 43.9 47.3

0.7 34.6 42.9 45.4 48.8 29.5 39.5 42.9 44.8 47.9

0.9 36.6 44.5 46.9 48.9 31.4 41.7 44.5 45.8 48.5

0.95 39.5 47.1 49.2 51.0 34.3 44.9 47.1 48.5 50.8

0.98 49.1 56.5 58.6 60.3 43.2 54.3 56.5 57.8 60.0

0.999 99.7 99.9 99.9 100.0 99.3 99.9 99.9 99.9 100.0

ρ S12 S24 S48 ω̂2
A91 ω̂2

AM ω̂2
KVB ω̂2

SPJ IM8 IM16

Panel A: Size under Gaussian AR(1)

0.0 5.0 4.8 5.0 5.9 6.0 5.1 5.0 4.9 5.0

0.7 5.1 5.0 5.3 13.0 8.6 7.4 6.1 7.6 12.2

0.9 5.1 5.3 5.9 24.9 15.1 12.8 8.5 17.6 31.5

0.95 5.0 5.0 5.7 38.3 22.7 19.8 11.6 31.1 48.3

0.98 4.7 4.7 5.3 59.6 37.8 34.2 18.6 52.3 67.0

0.999 4.7 4.9 5.4 91.6 84.1 79.4 53.8 89.0 93.0

Panel B: Size-adjusted power under Gaussian AR(1)

0.0 34.9 43.3 47.4 49.5 49.0 36.7 47.3 40.5 46.2

0.7 31.9 37.9 41.3 44.6 44.4 35.2 34.5 41.3 46.9

0.9 20.7 22.5 24.5 39.8 38.1 33.3 27.4 43.5 47.2

0.95 13.4 14.3 14.4 100.0 36.6 33.1 26.0 45.6 49.4

0.98 8.3 8.8 8.5 100.0 40.6 38.4 28.9 54.4 58.5

0.999 5.4 5.4 5.4 100.0 100.0 93.8 65.2 99.9 99.9

Note: Entries are rejection probability in percent of nominal 5% level tests. Under the alternative, the

population mean differs from the hypothesized mean by 2T−1/2(1− ρ)−1. Based on 100000 simulations.
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Table 11: Small sample performance for inference about regression coefficient

ρ EWC4 EWC8 EWC12 EWC24 OEWC3 OEWC6 OEWC8 OEWC10 OEWC20

Panel A: Size under scalar nonconstant regressor

0.0 5.4 5.5 5.4 5.5 1.7 3.5 4.0 4.3 4.8

0.7 6.3 6.9 7.2 8.0 2.0 4.5 5.1 5.8 6.9

0.9 9.0 10.9 12.3 17.1 3.0 7.2 8.6 9.9 14.4

0.95 12.4 16.0 19.2 28.0 4.2 10.9 13.2 15.5 23.9

0.98 18.3 25.0 30.7 42.8 7.0 17.6 21.8 25.5 38.1

0.999 28.9 39.9 46.9 58.6 12.2 30.3 36.4 41.4 54.5

Panel B: Size-adjusted power under scalar nonconstant regressor

0.0 46.7 57.7 61.6 65.4 39.4 54.4 57.7 60.1 65.0

0.7 35.3 43.8 46.2 49.3 30.7 40.6 43.8 45.0 48.5

0.9 31.0 37.6 39.7 41.5 27.0 35.3 37.6 38.7 41.2

0.95 31.6 37.9 39.6 42.1 28.1 35.9 37.9 38.9 41.3

0.98 37.7 43.5 45.7 48.4 33.6 41.5 43.5 44.8 47.7

0.999 91.0 94.4 95.2 95.9 87.4 93.4 94.4 94.9 95.8

ρ S12 S24 S48 ω̂2
A91 ω̂2

AM ω̂2
KVB ω̂2

SPJ IM8 IM16

Panel A: Size under scalar nonconstant regressor

0.0 5.0 4.9 5.1 6.0 6.0 5.4 5.5 5.0 4.9

0.7 5.2 5.0 5.0 10.2 8.0 7.1 7.1 5.5 5.7

0.9 5.3 4.8 4.4 17.7 13.0 11.0 10.2 5.8 5.6

0.95 5.0 4.1 4.1 25.0 18.0 15.4 13.7 5.6 5.3

0.98 4.1 3.5 3.5 36.0 25.6 22.4 19.0 5.0 5.1

0.999 2.8 2.5 2.5 51.3 36.9 33.4 26.1 4.7 4.9

Panel B: Size-adjusted power under scalar nonconstant regressor

0.0 46.5 58.4 64.2 68.2 68.0 50.8 66.6 53.1 54.2

0.7 35.1 44.0 48.4 49.7 48.8 37.9 44.9 44.4 52.1

0.9 29.7 35.1 37.9 100.0 37.6 32.7 33.9 52.9 73.9

0.95 27.3 31.5 32.8 100.0 35.3 32.5 31.1 70.3 91.6

0.98 25.5 29.2 29.6 100.0 38.8 36.7 33.7 93.5 99.7

0.999 32.0 37.0 37.0 100.0 89.5 87.8 80.3 100.0 100.0

Note: Entries are rejection probability in percent of nominal 5% level tests. Under the alternative, the

population regression coefficient differs from the hypothesized mean by 2.5T−1/2(1 − ρ2)−1/2. Based on

100000 simulations.
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Appendix A Proofs in Section 3

Before proving Theorem 3.2, I make some additional notations. Let {Zj}nj=0 be n + 1

i.i.d. standard normal random variables throughout this section. For ζ ∈ Rn
+ and n ≥ 1,

let Jn(ζ) = P
(
Z2

0 ≥
∑n

j=1 Z
2
j ζi

)
and define Kn(ζ) = P

(
Z2

0 ≤
∑n

j=1 Z
2
j ζi

)
. For a given

1 ≤ q̃ ≤ T − 1, a given f arising from Assumption 3.1(a), a given f ∗1 (specifically referred to

as κ−11[φ 6= 0] + 1[φ = 0] in Section 3), and 0 < α < 1, define cvq̃ such that

P

(
(1− cvq̃)Z

2
0 >

q̃∑
j=1

[
cvq̃ κf(πj/T )− 1

]
Z2
j

)
= α, (23)

and a condition condq̃

max
j=1,2,...,q̃

{
cvq̃ κf(πj/T )− 1

}
< 0 or min

j=1,2,...,q̃

{
cvq̃ κf(πj/T )− 1

}
> 0. (24)

Further, for ζ, ξ ∈ Rn
+, denote ζ↓ (ξ↓) the vector with the same components as ζ (ξ), but

sorted in descending order. We call ξ weakly majorizes ζ (ξ �w ζ) iff
∑k

j=1 ξj ≥
∑k

j=1 ζj for

1 ≤ k ≤ n. If, in addition,
∑n

j=1 ξj =
∑n

j=1 ζj, we say that ξ majorizes ζ (ξ � ζ).

The following lemmas establish some useful properties of Jn(·), Kn(·), cvq̃, and condq̃.

It is worth noting that if power is directed at a general function f̃1 under the alternative,

modified versions of the following auxiliary lemmas hold for f ∗1 (φ) = κ−1f̃1(φ)1[φ 6= 0]+1[φ =

0]. In that case, Assumption 3.1 must be amended accordingly: (b) must be changed to

f(πj/T )/f̃1(πj/T ) ≥ f(π(j+1)/T )/f̃1(π(j+1)/T ), j = 0, 1, . . . , T−2, and for the existence

of nontrivial tests we need f(π/T ) > κ−1f̃1(π/T ). I omit details for brevity and state the

lemmas and the proof of Theorem 3.2 with f ∗1 defined as in the main text.

A.1 Auxiliary lemmas

Lemma A.1 For any ζ∗ ∈ Rn
+, define M+(ζ∗) ≡ {ζ ∈ Rn

+|ζj ≥ ζ∗j ∀ 1 ≤ j ≤ n} and

M−(ζ∗) ≡ {ζ ∈ Rn
+|ζj ≤ ζ∗j ∀ 1 ≤ j ≤ n}. Then Jn(ζ∗) ≥ Jn(ζ) for any ζ ∈ M+(ζ∗) and

Jn(ζ∗) ≤ Jn(ζ) for any ζ ∈M−(ζ∗). Both equalities hold only if ζ = ζ∗.

Proof. For any ζ ∈ M+(ζ∗), the event {Z2
0 ≥

∑n
j=1 Z

2
j ζj} ⊂ {Z2

0 ≥
∑n

j=1 Z
2
j ζ
∗
j }. Thus

Jn(ζ∗) ≥ Jn(ζ). In the case ζj > ζ∗j for some 1 ≤ j ≤ n, {Z2
0 ≥

∑n
j=1 Z

2
j ζj} ( {Z2

0 ≥∑n
j=1 Z

2
j ζ
∗
j } and Jn(ζ∗) > Jn(ζ). For any ζ ∈ M−(ζ∗), the event {Z2

0 ≥
∑n

j=1 Z
2
j ζj} ⊃

{Z2
0 ≥

∑n
j=1 Z

2
j ζ
∗
j }. Thus Jn(ζ∗) ≤ Jn(ζ). In the case ζj < ζ∗j for some 1 ≤ j ≤ n,

{Z2
0 ≥

∑n
j=1 Z

2
i ζi} ) {Z2

0 ≥
∑n

j=1 Z
2
i ζ
∗
i } and Jn(ζ∗) < Jn(ζ).
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Corollary A.2 For any ζ∗ ∈ Rn
+, M+(ζ∗) and M−(ζ∗) are as defined in Lemma A.1.

Then Kn(ζ∗) ≤ Kn(ζ) for any ζ ∈M+(ζ∗) and Kn(ζ∗) ≥ Kn(ζ) for any ζ ∈M−(ζ∗). Both

equalities hold only if ζ = ζ∗.

Proof. Simply note that Kn(ζ) = 1− Jn(ζ). The conclusions then follow from Lemma A.1.

Remark A.3

i) A corrected version of Remark 4 in Bakirov (1996) can lead to the same set of conclusions

of Lemma A.1 with a different relationship (ξ � ζ or ζ � ξ). The exact statement in that

article is not quite right; i.e., the stated relationship Jn(ξ) ≥ Jn(ζ) is not necessarily true

under weak majorizations. A trivial counterexample is that ξ = (2, 0, 0, . . . , 0) �w ζ =

(0, 0, 0, . . . , 0) but J(ζ) < J(ξ) = 1. The corrected statement is Jn(ξ) ≥ Jn(ζ) if ξ � ζ

and ξj > 0, ζj > 0 for all j. This is proved by making use of the (Schur) convexity of

Jn(·) and invoking Caramata inequality.

ii) The discussion in (i) and Lemma A.1 provide somewhat complementary sufficient con-

ditions to explore the possible monotone properties of Jn(·) over Rn
+. Unfortunately, they

have not fully characterized the necessary conditions of Jn(ξ) ≥ Jn(ζ). Under the con-

ditions (ξ̄ − ζ̄)(1, 1, . . . , 1) + ζ � ξ and
∑n

j=1 ξi ≥
∑n

j=1 ζi where ξ̄ =
∑n

j=1 ξj/n and

ζ̄ =
∑n

j=1 ζj/n, it is less obvious to compare J(ξ) and J(ζ) unless ζ lies at the boundary.

Lemma A.4 For ζ ∈ Rn
+ and n ≥ 1, Jn(ζ) = 2

π

∫ 1

0
(1−u2)(n−1)/2du√∏n

j=1(1−u2+ζj)
and J1(ζ1) = 2

π
arcsin 1√

1+ζ1
.

Proof.

Jn(ζ) =
1

π

∫ ∞
0

dt
√
t(1 + t)

√∏n
j=1(1 + (1 + t)ζj)

=
1

π

∫ 1

0

s(n−1)/2ds√
(1− s)

∏n
j=1(s+ ζj)

=
2

π

∫ 1

0

(1− u2)(n−1)/2du√∏n
j=1(1− u2 + ζj)

, (25)

where the first equality follows from Lemma 2 of Bakirov and Székely (2006), the second

equality follows by a change of variable s = −1/(1 + t), and (25) follows by another change

of variable u =
√

1− s.

J1(ζ1) =
2

π

∫ 1

0

du√
(1− u2 + ζ1)

=
2

π
arcsin

1√
1 + ζ1

,

which follows from a change of variable v = u/
√

1 + ζ1 and the fact that the antiderivative

of (1− v2)−1/2 is arcsin v.
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Lemma A.5 For 0 < α < 1,

(a) cv1 exists if and only if f(π/T ) 6= κ−1. f(π/T ) ≶ κ−1 if and only if 1 ≶ cv1.

(b) cond1 holds if f(π/T ) 6= κ−1.

Proof.

(a) In (23) at q̃ = 1, if f(π/T ) = κ−1, there does not exist a cv1 and α such that (23) holds.

On the other hand, a rearrangement of the event in (23) at q̃ = 1 gives

P
(
Z2

0 + Z2
1 >

(
Z2

0 + κf(π/T )Z2
1

)
cv1

)
= α.

It follows that f(π/T ) ≶ κ−1 if and only if 1 ≶ cv1. Moreover, if f(π/T ) > κ−1, the

second part of Lemma A.4 in conjunction with (23) at q̃ = 1 gives

cv1 =
1

κf(π/T ) sin2 (απ/2) + cos2 (απ/2)
,

which always exists for every 0 < α < 1. In a similar vein, if f(π/T ) < κ−1, we have

cv1 =
1

κf(π/T ) cos2 (απ/2) + sin2 (απ/2)
,

which always exists. Thus, cv1 exists if and only if f(π/T ) 6= κ−1.

(b) It follows from the above that cond1 holds if f(π/T ) 6= κ−1.

Lemma A.6 For f(π/T ) 6= κ−1 and 0 < α < 1, if condq̃ is violated for some 1 < q̃ ≤ T −2,

then condq is also violated for any q̃ + 1 ≤ q ≤ T − 1.

Proof. Suppose condq̃ is violated while condq̃+1 holds. We have

max
j=1,2,...,q̃

{
cvq̃ κf(πj/T )− 1

}
≥ 0 and min

j=1,2,...,q̃

{
cvq̃ κf(πj/T )− 1

}
≤ 0. (26)

Case 1. Consider max
j=1,2,...,q̃+1

{
cvq̃+1 κf(πj/T )− 1

}
< 0. We must have cvq̃+1 > 1; other-

wise, (23) does not hold at q̃+1. On the other hand, 0 > max
j=1,2,...,q̃+1

{
cvq̃+1 κf(πj/T )− 1

}
≥

max
j=1,2,...,q̃

{
cvq̃+1 κf(πj/T )− 1

}
. This, in conjunction with the first part of (26), implies that

cvq̃ > cvq̃+1 > 1, which we now show is impossible. Suppose cvq̃ > cvq̃+1 > 1 is true. Denote
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A−q̃ = {j|1 ≤ j ≤ q̃, cvq̃ κf(πj/T ) − 1 < 0} (A−q̃ 6= ∅; otherwise, (23) does not hold for q̃).

Now (23) at q̃ gives

α = P

(
(1− cvq̃)Z

2
0 >

q̃∑
j=1

[
cvq̃ κf(πj/T )− 1

]
Z2
j

)

= P

(
Z2

0 <
1

1− cvq̃

q̃∑
j=1

[
cvq̃ κf(πj/T )− 1

]
Z2
j

)

= P

Z2
0 <

1

1− cvq̃

∑
j∈A−q̃

[
cvq̃ κf(πj/T )− 1

]
Z2
j +

1

1− cvq̃

∑
j /∈A−q̃

[
cvq̃ κf(πj/T )− 1

]
Z2
j


≤ P

Z2
0 <

1

1− cvq̃

∑
j∈A−q̃

[
cvq̃ κf(πj/T )− 1

]
Z2
j

 (27)

< P

Z2
0 <

1

1− cvq̃+1

∑
j∈A−q̃

[
cvq̃+1 κf(πj/T )− 1

]
Z2
j

 (28)

< P

(
Z2

0 <
1

1− cvq̃+1

∑
j∈A−q̃

[
cvq̃+1 κf(πj/T )− 1

]
Z2
j

+
1

1− cvq̃+1

∑
j /∈A−q̃

[
cvq̃+1 κf(πj/T )− 1

]
Z2
j

)
(29)

< P

(
Z2

0 <
1

1− cvq̃+1

q̃+1∑
j=1

[
cvq̃+1 κf(πj/T )− 1

]
Z2
j

)
= α,

where (27) is due to the fact that P (A < C−B) ≤ P (A < C) when A,B,C are independent

random variables and B ≥ 0 almost surely. The inequality (28) is due to Corollary A.2 and

the fact that for any j ∈ A−q̃ , 1
1−cvq̃

[
cvq̃ κf(πj/T )− 1

]
< 1

1−cvq̃+1

[
cvq̃+1 κf(πj/T )− 1

]
under

cvq̃ > cvq̃+1 > 1. The inequality (29) is due to Corollary A.2.

Case 2. Consider min
j=1,2,...,q̃+1

{
cvq̃+1 κf(πj/T )− 1

}
> 0. We must have cvq̃+1 < 1; other-

wise, (23) does not hold at q̃+1. On the other hand, 0 < min
j=1,2,...,q̃+1

{
cvq̃+1 κf(πj/T )− 1

}
≤

min
j=1,2,...,q̃

{
cvq̃+1 κf(πj/T )− 1

}
. This, in conjunction with the second part of (26), implies

that cvq̃ < cvq̃+1 < 1, which we next show is impossible. Suppose cvq̃ < cvq̃+1 < 1 is true.

Denote A+
q̃ = {j|1 ≤ j ≤ q̃, cvq̃ κf(πj/T )− 1 > 0} (A+

q̃ 6= ∅; otherwise, (23) is violated for
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q̃). Now (23) at q̃ gives

α = P

(
(1− cvq̃)Z

2
0 >

q̃∑
j=1

[
cvq̃ κf(πj/T )− 1

]
Z2
j

)

= P

(
Z2

0 >
1

1− cvq̃

q̃∑
j=1

[
cvq̃ κf(πj/T )− 1

]
Z2
j

)

= P

Z2
0 >

1

1− cvq̃

∑
j∈A+

q̃

[
cvq̃ κf(πj/T )− 1

]
Z2
j +

1

1− cvq̃

∑
j /∈A+

q̃

[
cvq̃ κf(πj/T )− 1

]
Z2
j


≥ P

Z2
0 >

1

1− cvq̃

∑
j∈A+

q̃

[
cvq̃ κf(πj/T )− 1

]
Z2
j

 (30)

> P

Z2
0 >

1

1− cvq̃+1

∑
j∈A+

q̃

[
cvq̃+1 κf(πj/T )− 1

]
Z2
j

 (31)

> P

(
Z2

0 >
1

1− cvq̃+1

∑
j∈A+

q̃

[
cvq̃+1 κf(πj/T )− 1

]
Z2
j

+
1

1− cvq̃+1

∑
j /∈A+

q̃

[
cvq̃+1 κf(πj/T )− 1

]
Z2
j

)
(32)

> P

(
Z2

0 >
1

1− cvq̃+1

q̃+1∑
j=1

[
cvq̃+1 κf(πj/T )− 1

]
Z2
j

)
= α,

where (30) is due to the fact that P (A ≥ C+B) ≥ P (A ≥ C) when A,B,C are independent

random variables and B ≤ 0 almost surely. The inequality (31) is due to Lemma A.1 and

the fact that for any j ∈ A+
q̃ , 1

1−cvq̃

[
cvq̃ κf(πj/T )− 1

]
< 1

1−cvq̃+1

[
cvq̃+1 κf(πj/T )− 1

]
under

cvq̃ < cvq̃+1 < 1. The inequality (32) is due to Lemma A.1.

Collecting the results from Case 1 and Case 2, we know that it is impossible to have

condq̃+1 hold, given that condq̃ does not. By induction, we have for f(π/T ) 6= κ and 0 <

α < 1, if condq̃ is violated for some 1 < q̃ ≤ T − 2, then condq is also violated for any

q̃ + 1 ≤ q ≤ T − 1.

Corollary A.7 For f(π/T ) 6= κ−1 and 0 < α < 1, if condq̃ holds for some 3 ≤ q̃ ≤ T − 1,

then condq also holds for any 2 ≤ q ≤ q̃ − 1.

Proof. This is the contrapositive statement of Lemma A.6.
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Corollary A.8 For f(π/T ) 6= κ−1 and 0 < α < 1, either one of the following will hold:

(a) there exists a unique 1 ≤ q∗ ≤ T − 2 such that condq is satisfied for all 1 ≤ q ≤ q∗ and

violated for all q∗ + 1 ≤ q ≤ T − 1;

(b) condq is satisfied for all 1 ≤ q ≤ T − 1. In this case, define q∗ = T − 1.

Proof. If condT−1 holds, by Corollary A.7, (b) is true. Otherwise if condT−2 holds, then (a)

is true with q∗ = T − 2. Otherwise, given that cond1 always holds by Lemma A.5, backward

inductions lead (a) to be true for a unique 1 ≤ q∗ ≤ T − 3.

Corollary A.9 If f in Assumption 3.1(a) equals 1 and 0 < α < 1, then condq holds for all

1 ≤ q ≤ T − 1.

Proof. f(πj/T ) = 1, j = 1, 2, . . . , T−1 reduces condT−1 to κ cvT−1−1 < 0 or κ cvT−1−1 >

0, which must be true for (23) to hold at q̃ = T − 1. It follows that condq holds for all

1 ≤ q ≤ T − 1 by Corollary A.7.

Lemma A.10 For f(π/T ) 6= κ−1, 0 < α < 1, and q∗ as defined in Corollary A.8, either

one of the following will hold:

(a) cvq > 1 for all 1 ≤ q ≤ q∗, and if q∗ ≥ 2, cvq+1 > cvq, q = 1, 2, . . . , q∗ − 1;

(b) cvq < 1 for all 1 ≤ q ≤ q∗, and if q∗ ≥ 2, cvq+1 < cvq, q = 1, 2, . . . , q∗ − 1.

Proof. Lemma A.5 leads to the conclusions for q∗ = 1. We now focus on q∗ ≥ 2.

Case 1. Suppose κf(π/T ) < 1, then Lemma A.5 implies that cv1 > 1. Suppose there

exists a q̃ = min{q|2 ≤ q ≤ q∗, cvq < 1}. (I note that cvq cannot be 1 for any q ≤ q∗;

otherwise, (23) cannot hold at the corresponding q.) Then we must have

min
j=1,2,...,q̃−1

{cvq̃−1 κf(πj/T )− 1} > min
j=1,2,...,q̃−1

{cvq̃ κf(πj/T )− 1}

≥ min
j=1,2,...,q̃

{cvq̃ κf(πj/T )− 1} > 0.

There is a contradiction, because maxj=1,2,...,q̃−1{cvq̃−1 κf(πj/T )−1} < 0. This subsequently

implies that cvq > 1 for all 1 ≤ q ≤ q∗. Moreover, for each j = 1, . . . , q∗, Rj(x) =[
κf(πj/T )x− 1

]
/(1 − x) is monotonically decreasing in (1,∞). (To see this, note that

κf(πj/T )− 1 < κf(πj/T ) cvq∗ −1 < 0 for every 1 ≤ j ≤ q∗.) For (23) to hold sequentially,

we necessarily need cvq+1 > cvq, q = 1, 2, . . . , q∗ − 1. (Otherwise, the LHS of (23) would

always exceed α by Lemma A.2.)
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Case 2. Suppose κf(π/T ) > 1, then Lemma A.5 implies that cv1 < 1. Suppose there

exists a q̃ = min{q|2 ≤ q ≤ q∗, cvq > 1}. (I note that cvq cannot be 1 for any q ≤ q∗;

otherwise, (23) cannot hold at the corresponding q.) Then we must have

max
j=1,2,...,q̃−1

{cvq̃−1 κf(πj/T )− 1} < max
j=1,2,...,q̃−1

{cvq̃ κf(πj/T )− 1}

≤ max
j=1,2,...,q̃

{cvq̃ κf(πj/T )− 1} < 0.

There is a contradiction, because minj=1,2,...,q̃−1{cvq̃−1 κf(πj/T ) − 1} > 0. This subse-

quently implies that cvq < 1 for all 1 ≤ q ≤ q∗. Moreover, for each j = 1, . . . , q∗,

Rj(x) =
[
κf(πj/T )x− 1

]
/(1 − x) is monotonically increasing in (0, 1). (To see this, note

that κf(πj/T )− 1 > κf(πj/T ) cvq∗ −1 > 0 for every 1 ≤ j ≤ q∗.) For (23) to hold sequen-

tially, we necessarily need cvq+1 < cvq, q = 1, 2, . . . , q∗ − 1. (Otherwise, the LHS of (23)

would always be below α by Lemma A.1.)

Lemma A.11 For f(π/T ) 6= κ−1, 0 < α < 1, and q∗ as defined in Corollary A.8, if

additionally Assumption 3.1(b) holds (f(πj/T ) ≥ f(π(j + 1)/T ), j = 0, 1, . . . , T − 2), and

q∗ < T − 1, then κ−1
(
f(πj/T )

)−1 ≥ cvq∗ for j > q∗.

Proof. DefineQ(x, q) = P
(

(1− x)Z2
0 >

∑q
j=1

[
xκf(πj/T )− 1

]
Z2
j

)
. Given that f(πj/T ) ≥

f(π(j+1)/T ), j = q∗+1, . . . , T −2, it suffices to show κ−1
(
f(π(q∗ + 1)/T )

)−1 ≥ cvq∗ . Sup-

pose not; then we must have κ−1
(
f(π(q∗ + 1)/T )

)−1
< cvq∗ .

Case 1. Suppose κf(π/T ) < 1, then cvq∗ > 1 by Lemma A.10. Moreover, by mono-

tonicity of f we must have κ−1
(
f(π(q∗ + 1)/T )

)−1
> 1.

Q(κ−1
(
f(π(q∗ + 1)/T )

)−1
, q∗ + 1)

=P

([
1− κ−1

(
f(π(q∗ + 1)/T )

)−1
]
Z2

0 >

q∗+1∑
j=1

[(
f(π(q∗ + 1)/T )

)−1
f(πj/T )− 1

]
Z2
j

)

=P

([
1− κ−1

(
f(π(q∗ + 1)/T )

)−1
]
Z2

0 >

q∗∑
j=1

[(
f(π(q∗ + 1)/T )

)−1
f(πj/T )− 1

]
Z2
j

)
=0 < α.
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Pick ε such that 1 < cvq∗ −ε < κ−1
(
f(π(q∗ + 1)/T )

)−1
< cvq∗ . Then

Q(cvq∗ −ε, q∗ + 1)

=P

(
[1− (cvq∗ −ε)]Z2

0 >

q∗+1∑
j=1

[
(cvq∗ −ε)κf(πj/T )− 1

]
Z2
j

)

>P

(
[1− (cvq∗ −ε)]Z2

0 >

q∗∑
j=1

[
(cvq∗ −ε)κf(πj/T )− 1

]
Z2
j

)
=Q(cvq∗ −ε, q∗) > Q(cvq∗ , q

∗) = α,

where the last but one inequality follows from the fact that Q(·, q∗) is monotonically decreas-

ing in (1, cvq∗) under κf(π/T ) < 1.

By the continuity of Q(·, q∗+1) in [cvq∗ −ε, κ−1
(
f(π(q∗ + 1)/T )

)−1
] and the intermediate

value theorem, there must exist a number, denoted by cvq∗+1, such that Q(cvq∗+1, q
∗+1) = α.

There is a contradiction, because condq∗+1 now holds, violating Corollary A.8.

Case 2. Suppose κf(π/T ) > 1, then cvq∗ < 1 by Lemma A.10.

Q(cvq∗ , q
∗ + 1) = P

(
[1− cvq∗ ]Z

2
0 >

q∗+1∑
j=1

[
cvq∗ κf(πj/T )− 1

]
Z2
j

)

< P

(
[1− cvq∗ ]Z

2
0 >

q∗∑
j=1

[
cvq∗ κf(πj/T )− 1

]
Z2
j

)
= Q(cvq∗ , q

∗) = α.

On the other hand, 0 < κ−1
(
f(π(q∗ + 1)/T )

)−1
< cvq∗ < 1. Then

Q(κ−1
(
f(π(q∗ + 1)/T )

)−1
, q∗ + 1)

=P

([
1− κ−1

(
f(π(q∗ + 1)/T )

)−1
]
Z2

0 >

q∗+1∑
j=1

[(
f(π(q∗ + 1)/T )

)−1
f(πj/T )− 1

]
Z2
j

)

=P

([
1− κ−1

(
f(π(q∗ + 1)/T )

)−1
]
Z2

0 >

q∗∑
j=1

[(
f(π(q∗ + 1)/T )

)−1
f(πj/T )− 1

]
Z2
j

)
=Q(κ−1

(
f(π(q∗ + 1)/T )

)−1
, q∗) > Q(cvq∗ , q

∗) = α,

where the last but one inequality follows from the fact that Q(·, q∗) is monotonically decreas-

ing in (0, cvq∗) under κf(π/T ) > 1.

By the continuity of Q(·, q∗ + 1) in [κ−1
(
f(π(q∗ + 1)/T )

)−1
, cvq∗ ] and the intermediate

value theorem , there must exist a number, denoted by cvq∗+1, such thatQ(cvq∗+1, q
∗+1) = α.

There is a contradiction, because condq∗+1 now holds, violating Corollary A.8.

Both Case 1 and Case 2 imply that we must have κ−1
(
f(π(q∗ + 1)/T )

)−1 ≥ cvq∗ , and

thus minq∗+1≤j≤T−1 κ
−1
(
f(πj/T )

)−1 ≥ cvq∗ if q∗ < T − 1.
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A.2 Proof of Theorem 3.2

Part 1 of Theorem 3.2 is already proved in the main text. I now focus on proving part 2 of

Theorem 3.2, in which f(π/T ) > κ−1. Under Assumption 3.1(a) and for 0 < α < 1, Corollary

A.8 shows that there exists a unique q∗ such that either (i) condq holds for 1 ≤ q ≤ q∗ and

is violated for q∗ + 1 ≤ q ≤ T − 1, or (ii) condq holds for all 1 ≤ q ≤ T − 1, where we

define q∗ = T − 1. We conjecture that the least favorable distribution Λ∗ of (9) puts a point

mass on f ∗(φ) = f(φ)1[0 ≤ φ ≤ πq∗/T ] + (κ cvq∗)
−11[φ > πq∗/T ]. By Lemma A.11 and

Assumption 3.1(c), the kinked function f ∗ is known to be in F .

Using the same notation from the main text, the best level α test of Hd
0,Λ∗ against Hd

1,f1

is

ϕΛ∗,f1 = 1

[
Y 2

0 +
∑T−1

j=1 Y
2
j /f

∗(πj/T )

Y 2
0 + κ

∑T−1
j=1 Y

2
j

> cv

]
,

for some cv ≥ 0 such that EPY,f∗ [ϕΛ∗,f1(Y
s)] = α, where PY,f̃ denotes the joint distribution

of Y at f = f̃ under Hd
0 . It follows that

α = PY,f∗

(
Y 2

0 +
∑T−1

j=1 Y
2
j /f

∗(πj/T )

Y 2
0 + κ

∑T−1
j=1 Y

2
j

> cv

)

= PY,f∗

(
Y 2

0 +
T−1∑
j=1

Y 2
j /f

∗(πj/T ) > cv

(
Y 2

0 + κ
T−1∑
j=1

Y 2
j

))

= P

(
(1− cv)Z2

0 >
T−1∑
j=1

[cv κf ∗(πj/T )− 1]Z2
j

)

= P

(
(1− cv)Z2

0 >

q∗∑
j=1

[
cv κf(πj/T )− 1

]
Z2
j +

T−1∑
j=q∗+1

[cv / cvq∗ −1]Z2
j

)
, (33)

where the last equality follows from the definition of f ∗. Because Y is a continuous random

vector, the critical value cv is unique. By matching (33) with (23) at q̃ = q∗, we have cv =

cvq∗ . Moreover, the events

{
Y 2
0 +

∑T−1
j=1 Y

2
j /f

∗(πj/T )

Y 2
0 +κ

∑T−1
j=1 Y

2
j

> cvq∗

}
and

{
Y 2
0 +

∑q∗
j=1 Y

2
j /f(πj/T )

Y 2
0 +κ

∑q∗
j=1 Y

2
j

> cvq∗

}
are equivalent PY,f̃ -almost surely, and uniformly in f̃ ∈ F ∪ {f ∗1}. This then leads to the

optimal test statistic in (10).

It remains to check that ϕΛ∗,f1 controls size under Hd
0 , i.e., supf̃∈F EPY,f̃ [ϕΛ∗,f1(Y )] ≤ α.
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For a given f̃ ∈ F ,

EPY,f̃ [ϕΛ∗,f1(Y )] = PY,f̃

(
Y 2

0 +
∑q∗

j=1 Y
2
j /f(πj/T )

Y 2
0 + κ

∑q∗

j=1 Y
2
j

> cvq∗

)

= P

(
[1− cvq∗ ]Z

2
0 >

q∗∑
j=1

[
cvq∗ κf(πj/T )− 1

] f̃(πj/T )

f(πj/T )
Z2
j

)

= P

(
Z2

0 >
1

1− cvq∗

q∗∑
j=1

[
cvq∗ κf(πj/T )− 1

] f̃(πj/T )

f(πj/T )
Z2
j

)
(34)

≤ P

(
Z2

0 >
1

1− cvq∗

q∗∑
j=1

[
cvq∗ κf(πj/T )− 1

]
Z2
j

)
= α,

where (34) follows from (b) in Lemma A.10 under the condition f(π/T ) > κ−1, and the

inequality follows from the definition of q∗ and Lemma A.1 under Assumption 3.1(a).

In sum, we have shown that Λ∗ is indeed the least favorable distribution in testing Hd
0

against Hd
1,f1

, under Assumption 3.1 and f(π/T ) > κ−1. Further, the statistic (10) is the

best test statistic, and the null rejection probability of this test is maximized at f = f .

Appendix B Computational Details in Section 3

B.1 An algorithm to compute q∗ in Theorem 3.2

In Algorithm 1 on the following page, I first use the bisection method three times to

zoom into a small set of consecutive integers and then locate q∗ by a one-dimensional greedy

search. One might be concerned about the sensitivity of the numerically determined q∗ to

the precision of empirically estimated critical values for different q. As will be explained

below, this is not an issue in implementations with B = 50, 000.

B.2 Computational details for cvq∗ in Theorem 3.2

Given the q∗ delivered via Algorithm 1, I numerically invert (13) by the standard bisection

method. Since the integrand in the last integral in (13) is smooth for typical values of cvq∗ ,

I use a 50-point Gaussian quadrature to compute the numerical integration. It suffices

for my purpose with numerical errors of the order 1e − 6. Moreover, to check whether

the determination of q∗ in Algorithm 1 is sensitive to simulation errors in estimating cvq̃,

I append a sanity check to Algorithm 1. In particular, I substitute the more precisely

determined cvq∗ , cvq∗−1, cvq∗−2 back into condq∗ , condq∗−1, condq∗−2 and check whether any
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of them are inconsistent with the definition of q∗. It appears that having 50, 000 realizations

of {Zj}T−1
j=0 suffices for our purpose.

Algorithm 1: Bisection method to produce q∗ in Theorem 3.2
Input: F with a well-defined f , T , α = 0.05 by default, κ = 11 by default,{

{zbj}
T−1
j=0

}B
b=1
← B realizations of i.i.d. standard normals for a sufficiently large B.

Output: q∗

Initialization: q̃ ← T −1, ĉvq̃ ← inf

{
r ∈ R+| 1B

∑B
b=1 1

[ ∑q̃
j=0(zbj )

2

(zb0)2+κ
∑q̃
j=1(zbj )

2f(πj/T )
> r

]
≥ α

}
;

if condq̃ is true with cvq̃ replaced by ĉvq then

q∗ ← q̃;

else

while condq̃ is false with cvq̃ replaced by ĉvq̃ do

q̃ ←
⌊

1+q̃
2

⌋
;

end˜̃q ← ⌊
3q̃−1

2

⌋
;

while cond˜̃q is false with cv˜̃q replaced by ĉv˜̃q do˜̃q ← ⌊ ˜̃q+q̃
2

⌋
;

end

for q ← ˜̃q to 2˜̃q − q̃ + 1 by 1 do

if condq+1 is false with cvq+1 replaced by ĉvq+1 then

q∗ ← q;

break ;

end

end

end

Appendix C More Tables of Adjustment Factor in the

Diagonal Model

I follow the procedure of producing Tables 1 and 2 to provide two sets of tables under

other types of smoothness classes. See Tables 12 and 13 under the type of F , in which the

first derivative of log(f) is bounded by the constant C. See Tables 14 and 15 under the type

of F , in which the second derivative of log(f) is bounded by the constant 2C.
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Table 12: Optimal q and adj. factor of the Student-t critical value of level α EWC test.

C 10.0 5.6 3.2 1.8 1.0 0.6 0.3

α = 0.05 (4, 1.47) (5, 1.30) (7, 1.21) (9, 1.15) (11, 1.10) (15, 1.07) (20, 1.05)

Notes: Based on a series of smoothness classes F , in which the “uniformly minimal” function is f(φ) =

exp(−Cφ). Sample size T = 100. C is log-spaced between 10 and 0.3.

Table 13: Adjustment factor of the Student-t critical value from Table 12

q 4 6 8 9 10 11 12 16 20

α = 0.05 1.47 1.30 1.19 1.21 1.11 1.10 1.09 1.07 1.05

(10.0) (5.6) (3.3) (3.2) (1.2) (1.0) (0.9) (0.5) (0.3)

Notes: Number in parentheses is the C in f(φ) = exp(−Cφ) that rationalizes the corresponding q as the

optimal choice for the EWC test under T = 100.

Table 14: Optimal q and adj. factor of the Student-t critical values of level α EWC test.

C 100.0 56.2 17.8 5.6 3.2 1.8 1.0

α = 0.05 (3, 1.25) (4, 1.22) (6, 1.14) (8, 1.07) (10, 1.06) (12, 1.05) (14, 1.04)

Notes: Based on a series of smoothness classes F , in which the “uniformly minimal” function is f(φ) =

exp
(
−Cφ2

)
. Sample size T = 100. C is log-spaced between 100 and 1.

Table 15: Adjustment factor of the Student-t critical value from Table 14.

q 3 4 6 8 9 10 11 12 16 20

α = 0.05 1.25 1.22 1.14 1.07 1.06 1.06 1.05 1.05 1.03 1.02

(100.0) (56.2) (17.8) (5.6) (4.0) (3.2) (2.0) (1.8) (0.7) (0.35)

Notes: Number in parentheses is the C in f(φ) = exp
(
−Cφ2

)
that rationalizes the corresponding q as the

optimal choice for the EWC test under T = 100.
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Appendix D Computational details in Section 4

In this section, I explain in detail how to numerically identify the null rejection probability

maximizer of the EWC test in testing (17), as introduced in Subsection 4.1.1.

To make things clearer, we repeat some notations from the main text. Let the n + 1

node points {xi}ni=0 define a partition of the interval I = [0, π] into n subintervals Ii =

[xi−1, xi], i = 1, 2, . . . , n of length hi = xi − xi−1 with x0 = 0, xn = π. Let {ςi}ni=0 be a set

of basis functions for the space Fh of continuous piecewise linear functions, which is defined

in the main text.

In actual implementations, I choose n = 50, and {xi}50
i=0 are log-spaced nodes in [0, π].

The basis functions {ςi}ni=0 are chosen to be the hat functions

ςi(x) =


(x− xi−1)/hi , if x ∈ Ii,

(xi+1 − x)/hi+1 , if x ∈ Ii+1,

0 , otherwise.

(35)

I pre-compute {Ω0(ςi)}ni=0 with a 5, 000-point Gaussian quadrature for each non-zero element.

Since each ςi is compactly supported, these numerical integrations are nearly precise. For

every (f(x1), f(x2), . . . , f(xn))′, Ω0(f̂) is simply a linear combination of these pre-computed

covariance matrices.

Note, however, that the ultimate objective function I will optimize is (21), which involves

Ω0(f) implicitly through λj(f̂). In a separate exercise in which, for a given EWC test and a

parametric AR(1) class F with coefficient varying over a fine grid, I compare the rejection

probabilities following the described approximate procedure and an “exact” procedure in

which each entry of Ω0(f) is evaluated by numerical integrations via Mathematica. The

difference in the rejection probabilities are at most of the order 0.0001. I thus hold on to the

above choice of n and {xi}50
i=0 throughout Section 4.

I proceed in three steps to identify the null rejection probability maximizer for a fixed

EWC test of (17), in terms of (f(x1), f(x2), . . . , f(xn))′.

1. Program up the null rejection probability at a given (f(x1), f(x2), . . . , f(xn))′ ∈ Rn
+ from

(21), where Ω0(f̂) =
∑n

i=0 f(xi)Ω0(ςi) with pre-computed {Ω0(ςi)}ni=0.

2. Randomly draw 1, 000 n-dimensional vectors (f(x1), f(x2), . . . , f(xn))′ such that each

vector corresponds to some f ∈ F . This is in general a challenging task, since the

number of numerical constraints to be checked increases exponentially with n for higher
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order smoothness constraints. For feasibility, I focus on two types of smoothness classes:

the class F in which f corresponds is AR(1) with coefficient ρ and f ∈ F is non-increasing

over [0, π]; and the class F in which f ∈ F is Lipschitz continuous in logs with Lipschitz

constant C. It is not hard to see that for the first type, it suffices to check the monotonicity

constraint consecutively and the lower boundedness condition. For the second type, by

the result of Beliakov (2006), the complexity of checking the global Lipschitz condition

is reduced to consecutive checking of local Lipschitz conditions.

3. Use every n-dimensional vector drawn in Step 2 as the initial condition to optimize the

null rejection probability function programmed in Step 1, subject to linear constraints

induced by smoothness class F (as described in Step 2).

Under the above specifications, it takes 5 to 10 minutes to complete the optimization using

fmincon in MATLAB via parallel computing in 12 cores.
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