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We introduce a generalization of the popular local-to-unity model of time series per-
sistence by allowing for p autoregressive (AR) roots and p− 1 moving average (MA)
roots close to unity. This generalized local-to-unity model, GLTU(p), induces conver-
gence of the suitably scaled time series to a continuous time Gaussian ARMA(p�p−1)
process on the unit interval. Our main theoretical result establishes the richness of this
model class, in the sense that it can well approximate a large class of processes with sta-
tionary Gaussian limits that are not entirely distinct from the unit root benchmark. We
show that Campbell and Yogo’s (2006) popular inference method for predictive regres-
sions fails to control size in the GLTU(2) model with empirically plausible parameter
values, and we propose a limited-information Bayesian framework for inference in the
GLTU(p) model and apply it to quantify the uncertainty about the half-life of devia-
tions from purchasing power parity.

KEYWORDS: Continuous time ARMA process, convergence, approximability.

1. INTRODUCTION

THIS PAPER PROPOSES a flexible asymptotic framework for the modelling of persistent
time series. Our starting point is an empirical observation: For many macroeconomic time
series, such as the unemployment rate, interest rates, labor’s share of national income,
real exchange rates, price earnings ratios, etc., tests for an autoregressive unit root are
often inconclusive, or rejections are not exceedingly significant. As such, the unit root
model is a natural benchmark for empirically plausible persistence modelling. At the same
time, most economic models assume that these time series are stationary. What is more,
econometric techniques based on an assumption of an exact unit root can yield highly
misleading inference under moderate deviations of the unit root model, as demonstrated
by Elliott (1998).

These concerns have generated a large literature on econometric modelling and infer-
ence with the local-to-unity model.1 Specifically, a stationary local-to-unity (LTU) model
of the scalar time series xT�t is of the form

(1 − ρTL)(xT�t −μ)= ut� t = 1� � � � �T� (1)
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where L is the lag operator, ρT = 1 − c/T for some fixed c > 0, and ut is a mean-zero I(0)
disturbance satisfying a functional central limit theorem T−1/2

∑�·T �
t=1 ut ⇒W (·) with W a

Wiener process with variance equal to the long-run variance of ut . In this model,

T−1/2(xT��·T � − xT�1) ⇒ J1(·)− J1(0)� (2)

where J1 is a stationary Ornstein–Uhlenbeck process with parameter c, the continuous
time analogue of an AR(1) process. The process (1) is the local asymptotic alternative
of an autoregressive unit root (cf. Elliott, Rothenberg, and Stock (1996), Elliott (1999)).
As such, it is impossible to perfectly discriminate between a LTU process and a unit root
process, even as T → ∞. Correspondingly, for any finite c, the measure of J1(·)− J1(0)
is mutually absolutely continuous with respect to the measure of W , the continuous time
analogue of a unit root process. LTU asymptotics thus properly reflect the empirical am-
bivalence of unit root tests noted above.

But the LTU model is clearly not the only persistence model with this feature, even with
attention restricted to stationary models. After all, the properties of the limiting process
J1 are governed by a single parameter c, and the long-range dependence of J1 are those of
a continuous time AR(1). For instance, in the LTU model, the correlation between xT��sT �
and xT��rT � converges to e−c|s−r|. It is not clear why this very particular form of long-range
dependence should adequately model the persistence properties of macroeconomic time
series.

This paper proposes a more flexible asymptotic framework by allowing for p autore-
gressive roots and p− 1 moving-average roots local-to-unity for p≥ 1, so that

(1 − ρT�1L)(1 − ρT�2L) · · · (1 − ρT�pL)(xT�t −μ)= (1 − γT�1L) · · · (1 − γT�p−1L)ut�

where ρT�j = 1 − cj/T and γT�j = 1 − gj/T for fixed {cj}pj=1 and {gj}p−1
j=1 (with some condi-

tions on these parameters as specified in Section 2 below). With p= 1, this “generalized
local-to-unity” model GLTU(p) nests the familiar LTU model (1). A first result of this
paper is the convergence of the GLTU(p) model, that is, in analogy to (2),

T−1/2(xT��·T � − xT�1) ⇒ Jp(·)− Jp(0)� (3)

where Jp is a stationary continuous time Gaussian ARMA(p�p− 1) process with param-
eters {cj}pj=1 and {gj}p−1

j=1 .
The GLTU(p) model sets the difference between the number of local-to-unity autore-

gressive and moving-average parameters to exactly one. This ensures that the limit process
Jp still resembles a Wiener process: For instance, if instead (1 − ρT�1L)(1 − ρT�2L)(xT�t −
μ)= ut , the large sample properties of xT�t would be more akin to an I(2) process, with
the suitably scaled limit of xT��·T � − xT�1 converging to a limit process that is absolutely
continuous with respect to the measure of an integrated Wiener process

∫ ·
0 W (r)dr. In

contrast, the measure of Jp(·)− Jp(0) is mutually absolutely continuous with respect to
the measure ofW , so just as for the LTU model, the GLTU(p)model cannot be perfectly
discriminated from the unit root model, even asymptotically.

While clearly more general than the standard local-to-unity model (1), one might still
worry about the appropriateness of the GLTU(p) model for generic persistence mod-
elling of macroeconomic time series. Our main theoretical result addresses this concern
by establishing the richness of the GLTU(p) model class. Recall that the total variation
distance between two probability measures is the difference in the probability they assign
to an event, maximized over all events. We show in Section 3 below that for any given
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stationary Gaussian limiting process G whose measure of G(·)−G(0) is mutually abso-
lutely continuous with respect to the measure of W , and a mild regularity constraint on
the spectral density ofG, for any ε > 0 there exists a finite pε and GLTU(pε)model such
that the measure of the induced limiting process Jpε is within ε of the measure of G in
total variation norm. In other words, for small ε, the stochastic properties of Jpε and G
are nearly identical. Thus, positing a GLTU model is nearly without loss of generality for
the large sample modelling of persistent stationary processes that cannot be distinguished
from a unit root process with certainty in large samples.

In practice, applications of the GLTU model involve the choice of a finite p and the de-
termination of the corresponding 2p− 1 GLTU(p)model parameters {cj}pj=1 and {gj}p−1

j=1 .
This is perfectly analogous to the modelling of generic covariance stationary processes
as finite order AR, MA, or ARMA process. The implementation is relatively harder for
the GLTU mode, however: As noted above, since the LTU model cannot be perfectly
discriminated from the unit root model, the parameter c in (1) cannot be consistently es-
timated. By the same logic, neither the value of p, nor the parameters {cj}pj=1 and {gj}p−1

j=1

for a given p can be consistently estimated. This impossibility is simply the flip side of the
arguably attractive property of GLTU asymptotics to appropriately capture the empirical
ambivalence of unit root tests.

With that in mind, we suggest a limited-information framework for likelihood based
inference with the GLTU(p) model. Note that (3) implies, for any fixed integer N

{
T−1/2(xT��jT/N� − xT�1)

}N
j=1

⇒ {
Jp(j/N)− Jp(0)

}N
j=1
� (4)

Thus, with attention restricted to the N observations on the left-hand side of (4), large-
sample inference about the GLTU parameters is equivalent to inference given N dis-
cretely sampled observations from a continuous time Gaussian ARMA(p�p−1) process.
But this latter problem is well studied (cf. Phillips (1959), Jones (1981), Bergstrom (1985),
Jones and Ackerson (1990), for example), and we show how to obtain a numerically ac-
curate approximation to the likelihood by a straightforward Kalman filter.

We use this framework for two conceptually distinct empirical exercises. First, we show
that inference methods derived to be valid in the LTU model can be highly misleading
under an empirically plausible GLTU(2) model. In particular, we consider Campbell and
Yogo’s (2006) popular test for stock return predictability. By construction, this test con-
trols size in the LTU model. But we find that in the GLTU(2)model, it exhibits severe size
distortions, even if the GLTU(2) parameters are restricted to be within a two log-points
neighborhood of the peak of the limited-information likelihood for the price–dividend
ratio. In other words, unless one has good reasons to impose that the long-range persis-
tence patterns of potential stock price predictors are of the AR(1) type, the Campbell
and Yogo (2006) test is not a reliable test of the absence of predictability. This points to
Wright’s (2000b) test as an attractive alternative that remains robust irrespective of the
persistence properties of the predictor.

Second, and more constructively, we conduct limited-information Bayesian inference
about the half-life of the United States/United Kingdom (US/UK) real exchange rate
deviations, using the long-span data from Lothian and Taylor (1996). We suggest forming
a prior on the GLTU parameters in terms of the smoothness of the implied continuous
time ARMA spectral density. The functional form of this spectral density allows for a
very compact and easy-to-evaluate expression for one such measure. Substantively, we
find that the GLTU model with p ≥ 2 is strongly preferred by the data as indicated by
the corresponding Bayes factors, while at the same time leading to much larger posterior
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half-life estimates. This illustrates that allowing for the generality provided by the GLTU
model can substantially alter conclusions about economic quantities of interest.

The computational convenience of the limited-information likelihood also potentially
enables the numerical determination of asymptotically valid frequentist inference in the
GLTU(p) model, at least for a given moderately large value of p. In the Appendix, we
determine location and scale invariant tests of H0 : p = 1 against H1 : p > 1 using the
algorithm of Elliott, Müller, and Watson (2015) to deal with the composite nature of
the hypotheses. We find that applied to the US/UK real exchange rate data, these tests
reject at the 1% level, corroborating the Bayesian finding that the LTU model is unable
to adequately capture the low-frequency properties of these series.

This paper contributes to a large literature on alternative models of persistence, such
as the fractional model (see Robinson (2003) for an overview), the stochastic local-to-
unity model of Lieberman and Phillips (2014, 2017) or the three parameter model of
Müller and Watson (2016). These models are generalizations of the unit root model that
for almost all parameter values can be perfectly discriminated from this benchmark, at
least in large samples, so they do not fall into the class of models this paper focusses on.
The scalar GLTU model is closely connected to the VAR(1) LTU model considered by
Phillips (1988, 1998), Stock and Watson (1996) or Stock (1996): The marginal process for
a scalar time series of a VAR(1) LTU model is in the GLTU class, since sums of finite
order AR processes are finite order ARMA processes, and as we demonstrate below, the
GLTU model can be represented as a weighted average of a latent p-dimensional LTU
VAR(1).

Our main theoretical result on the approximability of continuous time Gaussian pro-
cesses is related in spirit to the approximability of the second order properties of dis-
crete time stationary processes by the finite order ARMA class—see, for instance, Theo-
rem 4.4.3 of Brockwell and Davis (1991) for a textbook exposition. The continuous time
case is subtly different, though, since spectral densities are then functions on the entire
real line (and not confined to the interval [−π�π]). What is more, we obtain approxima-
bility in total variation distance, and not just for a metric on second order properties. We
are not aware of any closely related results in the literature.

The remainder of the paper is organized as follows. Section 2 introduces the GLTU(p)
model in detail and formally establishes its limiting properties. Section 3 studies the rich-
ness of the GLTU(p) model class and contains the main theoretical result. Section 4
develops a straightforward Kalman filter to evaluate the limited-information likelihood.
Section 5 contains the two empirical illustrations, and is followed by a concluding Sec-
tion 6. Proofs are collected in the Appendix.

2. THE GLTU(p) MODEL

2.1. Definition

We make the following assumptions about the building blocks of the GLTU(p) model

(1 − ρT�1L)(1 − ρT�2L) · · · (1 − ρT�pL)(xT�t −μ)= (1 − γT�1L) · · · (1 − γT�p−1L)ut� (5)

where ρT�j = 1 − cj/T and γT�j = 1 − gj/T .

CONDITION 1: (i) The innovations {ut}∞
t=−∞ are mean-zero covariance stationary with ab-

solutely summable autocovariances and satisfy T−1/2
∑�·T �

t=1 ut ⇒W (·), where W (·) is
a Wiener process of variance ω2.
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(ii) The parameters {cj}pj=1 and {gj}p−1
j=1 do not depend on T and have positive real parts.

They can be complex valued, but if they are, then they appear in conjugate pairs, so that
the polynomials a(z)= ∏p

j=1(cj + z)= zp + ∑p

j=1 ajz
p−j and b(z)= ∏p−1

j=1 (gj + z)=
zp−1 + ∑p−2

j=0 bjz
j have real coefficients.

(iii) For all T , the process {xT�t}∞
t=−∞ is covariance stationary.

The high-level Condition 1(i) allows for flexible weak dependence in the innovations
ut . Part (ii) ensures that a covariance stationary distribution of xT�t exists, and that the
limiting continuous time Gaussian ARMA process Jp is causal and invertible. Part (iii)
implicitly restricts the initial condition (xT�0� � � � � xT�−p+1) to also be drawn from this co-
variance stationarity model.

2.2. Continuous Time Gaussian ARMA Processes

Let Jp be a mean-zero stationary continuous time Gaussian ARMA(p�p− 1) process
with parameters {cj}pj=1, {gj}p−1

j=1 and ω2 of Condition 1(ii), denoted CARMA(p�p − 1)
process in the following. As discussed in Brockwell (2001), Jp can be written as a scalar
observation

Jp(s)= b′X(s) (6)

of the p× 1 state process X with

X(s)= eAsX(0)+
∫ s

0
eA(s−r)edW (r)� (7)

where X(0)∼N (0�Σ) is independent of the scalar Wiener process W of variance ω2,

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
���

���
���

� � �
���

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1

⎞
⎟⎟⎟⎟⎠ � e =

⎛
⎜⎜⎜⎜⎝

0
0
���
0
1

⎞
⎟⎟⎟⎟⎠ � b =

⎛
⎜⎜⎜⎜⎝
b0

b1
���

bp−2

1

⎞
⎟⎟⎟⎟⎠

and the coefficients aj and bj are defined in Condition 1(ii). The covariance matrix of
X(0), and hence X(s), is given by

Σ =E[
X(0)X(0)′

] =ω2

∫ 0

−∞
e−Aree′e−A′r dr� (8)

the autocovariance function of Jp is γp(r) = E[Jp(s)Jp(s + r)] = b′eA|r|Σb, and, with i =√−1, the spectral density fp :R �→ R of Jp satisfies

fJp(λ)= 1
2π

∫ ∞

−∞
e−iλrγp(r)dr = ω2

2π

∣∣b(iλ)∣∣2

∣∣a(iλ)∣∣2 = ω2

2π

p−1∏
j=1

(
λ2 + g2

j

)
p∏
j=1

(
λ2 + c2

j

) � (9)
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Theorem III.17 of Ibragimov and Rozanov (1978) implies that the measure of Jp is
mutually absolutely continuous with the measure of J1 for any fixed c = c1 > 0. Since the
measure of J1(·)− J(0) is mutually absolutely continuous with the measure of W , so the
same holds true for Jp(·)− Jp(0).

2.3. Limit Theory

The usual state space representation of the discrete time ARMA process (5) in the def-
inition of the GLTU(p) model is not obviously related to the state space representation
(6) and (7) of the CARMA(p�p− 1) process. But it turns out that one can rewrite the
former in the form

xT�t = μ+ b′ZT�t� (10)

ZT�t = (I + A/T)ZT�t−1 + eut� (11)

where ZT�t ∈ R
p, mimicking (6) and (7). This is the key step in the proof of the following

theorem, which establishes the large sample relationship between the GLTU(p) model
and the corresponding CARMA(p�p− 1) model Jp.

THEOREM 1: Under Condition 1, the GLTU(p) model satisfies T−1/2(xT��·T � − μ) ⇒
Jp(·).

Equations (10) and (11) demonstrate that the GLTU model for xT�t amounts to a linear
combination of the LTU VAR(1) process ZT�t with matrix LTU parameter A. As noted in
the introduction, the LTU VAR(1) model has been considered in the literature to jointly
model several persistent time series. It follows from standard results (see, for instance,
Corollary 11.1.1 of Lütkepohl (2005)) that linear combinations of a p dimensional LTU
VAR(1) are in the GLTU(p) class, for any (stationary) choice of the matrix LTU pa-
rameter. For instance, sums of p independent scalar LTU processes form a particular
GLTU(p) model.

We are not aware of previous work that models a scalar series xT�t as a linear combi-
nation of a latent LTU VAR(1) process to induce more flexible long-run dynamics. Note
that if this is the objective, then leaving the LTU matrix parameter and the innovation
covariance matrix of the latent VAR process unrestricted leads to a severely redundant
parameterization. In the nonredundant parameterization of (10) and (11), the LTU ma-
trix parameter A in (11) has only p free parameters, and the covariance matrix of the
innovation eut has only one free parameter.

3. RICHNESS OF THE GLTU(p) MODEL CLASS

In this section we explore the range of large sample persistence patterns that GLTU(p)
models can induce. Consider a process xT�t , not necessarily a GLTU process, that satisfies
T−1/2(xT��·T � − μ)⇒G(·) for some mean-zero stochastic process G on the unit interval.
How well can a GLTU(p) model approximate the large sample long-range dynamics of
xT�t , as characterized by the properties of G?

By Theorem 1, this amounts to studying how well the class of CARMA(p�p− 1) pro-
cesses Jp can approximate the process G. As discussed in the introduction, we focus on
processes xT�t that are stationary and that cannot be distinguished from a unit root model
with certainty, even asymptotically. Since the limiting process of the unit root model is
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the Wiener process W , the latter condition amounts to requiring that the measure of
G(·)−G(0) is absolutely continuous with respect to the measure of W .

The following theorem shows that the GLTU class can closely approximate all such
processes, at least under an additional technical assumption.

THEOREM 2: Let G be a mean-zero continuous time stationary Gaussian process on the
unit interval satisfying

(i) the measure ofG(·)−G(0) is absolutely continuous with respect to the measure ofW ;
(ii) G has a spectral density fG : R → [0�∞) satisfying supλ(1 + λ2)fG(λ) < ∞ and

infλ(1 + λ2)fG(λ) > 0.
Then for any ε > 0, there exists a CARMA(pε�pε − 1) process Jpε such that the total

variation distance between the measures of G and Jpε is smaller than ε.

The conclusion of Theorem 2 is that the entirety of the stochastic properties of G can
be well approximated by the stochastic properties for some GLTU(p) limiting process Jp,
for a large enough but finite p. In addition to condition (i), which formalizes the assump-
tion of the unit root model as a reasonable statistical benchmark, we require the technical
condition (ii) on the spectral density of G. To shed further light on its nature, note that
the spectral density of an Ornstein–Uhlenbeck process J1 with mean reverting parameter
c = 1 is given by fJ1(λ)= (2π)−1ω2/(λ2 + 1), so that limλ→∞(1 + λ2)fJ1(λ)=ω2/(2π). In
fact, it follows from (9) that limλ→∞(1 +λ2)fJp(λ)=ω2/(2π) for any CARMA(p�p− 1)
process. Condition (ii) of Theorem 2 only requires that (1 + λ2)fG(λ) is bounded away
from zero and infinity uniformly in λ, but not that it converges as λ→ ∞ (so Theorem 2
covers cases where supλ(1+λ2)|fG(λ)−fJpε (λ)| is large, even for small ε). It also immedi-
ately follows from Theorem III.17 of Ibragimov and Rozanov (1978) that if (1 +λq)fG(λ)
is bounded away from zero and infinity uniformly in λ for some q > 1, then for any q = 2,
the measure of G is orthogonal to the measure of J1, and hence the first assumption in
Theorem 2 is violated. Thus, given assumption (i), assumption (ii) is arguably fairly mild.

The proof of Theorem 2 is involved. We leverage classic results on the mutual absolute
continuity (but not approximability) of Gaussian measures by Ibragimov and Rozanov
(1978) to obtain a bound on the entropy norm between the measures of a countable set of
characterizing random variables {ψj(G)}∞

j=1 and those of potential approximating process
in terms of their spectral densities, and then apply a locally compact version of the Stone–
Weierstrass theorem to uniformly approximate fG by some fJpε . See the Appendix for
details.

4. A LIMITED-INFORMATION LIKELIHOOD FRAMEWORK

In this section we suggest a framework for conducting large sample inference with
the GLTU model. A natural place to start would be the likelihood of Jp. Pham-Dinh
(1977) derives the likelihood but notes that it is “too complicated for practical use”
(p. 390). What is more, it wouldn’t be appropriate to treat T−1/2(xT�[·T ] − μ) as a real-
ization of Jp(·) directly, since Theorem 1 only establishes weak convergence. To make
further progress, we restrict attention to inference that is a function only of the N ran-
dom variables {xT��jT/N�}Nj=1, for some given finite integer N .

4.1. Large Sample Approximation

The following result is immediate from Theorem 1 and the continuous mapping theo-
rem.
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COROLLARY 1: Under Condition 1, for any fixed integer N ≥ 1,

{
T−1/2(xT��jT/N� −μ)}N

j=1
⇒ {

Jp(j/N)
}N
j=1
� (12)

An asymptotically justified limited-information likelihood of the GLTU(p) model is
thus given by the likelihood of a discretely sampled CARMA(p�p − 1) process. The
number N determines the resolution of the limited-information “lens” through which
we view the original data {xT�t}Tt=1. The convergence in Theorem 1, and thus in (12), are
approximations that show that under a wide range of weak dependence of ut , central limit
theorem type effects yield large sample Gaussianity and a dependence structure that is
completely dominated by the long-run dependence properties of the GLTU(p) model.
In finite samples, a large N takes these approximations seriously even on a relatively
fine grid, so in general, a large N reduces the robustness of the resulting inference. At
the same time, a small N leads to a fairly uninformative limited-information likelihood.2
The choice of N thus amounts to a classic efficiency versus robustness trade-off. In our
applications, we set N = 50.

4.2. Numerical Approximation to Limited-Information Likelihood

As noted in the introduction, there are a number of suggestions in the literature on how
to obtain the likelihood of a discretely sampled CARMA(p�p−1) process. One potential
difficulty is the computation of covariance matrices involving matrix exponentials (cf. (8)).
If the local-to-unity AR roots are distinct, then the companion matrix A is diagonalizable,
so one can rotate the system by the matrix of eigenvectors to avoid this difficulty. But
in general, this yields a complex valued system, which requires additional care. What is
more, one might not want to rule out a pair of identical local-to-unity AR roots a priori.

We now develop an alternative approach for the computation of the likelihood of
{Jp(j/N)}Nj=1 that avoids these difficulties. To this end, consider the discrete time Gaussian
ARMA(p�p− 1) process

(1 − ρT0�1L) · · · (1 − ρT0�pL)
(
x0
T0�t

−μ) = (1 − γT0�1L) · · · (1 − γT0�p−1L)u
0
t (13)

for t = 1� � � � � T0, where T0 is large, u0
t ∼ iidN (0�ω2), and ρT0�j and γT0�j are defined below

(5). As in (10) and (11), x0
T0�t

has the state space representation

x0
T0�t

= b′Z0
T0�t

+μ� (14)

Z0
T0�t

= (Ip + A/T0)Z0
T0�t−1 + eu0

t � (15)

with Ω0
T0

= E[Z0
T0�0
(Z0

T0�0
)′] satisfying vecΩ0

T0
= ω2(Ip2 − (Ip + A/T0)⊗ (Ip + A/T0))

−1 ×
vec(ee′).

With T = T0 and ut = u0
t , the model (13) clearly satisfies Condition 1, so by Corollary 1,

{
T−1/2

0

(
x0
T0��jT0/N� −μ)}N

j=1
⇒ {

Jp(j/N)
}N
j=1

(16)

2The number of observations N thus plays a similar role to the number of cosine regression coefficients q
in the low-frequency extraction approach of Müller and Watson (2017); in combination with the Kalman filter
described below, the approach based on (12) is computationally much more advantageous, however.
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as T0 → ∞. Furthermore, since {x0
T0�t

}T0
t=1 is a Gaussian process, this further implies

convergence of the corresponding first two moments. Thus, the Gaussian likelihood of
{T−1/2

0 (x0
T0��jT0/N� − μ)}Nj=1 approximates the likelihood of {Jp(j/N)}Nj=1 arbitrarily well as

T0 → ∞. An accurate Euler-type approximation to the asymptotically justified limited-
information likelihood for the 2p + 1 parameters μ, ω2, {cj}pj=1 and {gj}p−1

j=1 of the
GLTU(p) model can therefore be obtained from a straightforward application of the
Kalman filter with state (15) and observations x0

T0��jT0/N� = xT��jT/N�, j = 1� � � � �N , with all
other observations of x0

T0�t
treated as missing. In our applications, we found that setting

T0 = 1000 leads to results that remain numerically stable also for larger values of T0.

4.3. Parameterization of GLTU Parameters

A remaining difficulty is the restriction on the parameters {cj}pj=1 and {gj}p−1
j=1 of Con-

dition 1(ii). Here we follow Jones (1981), who noted that under Condition 1(ii), one
can rewrite a(z) and b(z) as a product of quadratic factors (and a linear factor if
p is odd), where each quadratic factor collapses a potentially conjugate pair of roots
into a quadratic polynomial with positive coefficients. For instance, if c1 = cr1 + ci1i and
c2 = cr1 − ci1i with cr1 > 0 and ci1 ∈ R, then (z + c1)(z + c2) = (ci1)

2 + (cr1)
2 + 2cr1z + z2,

and if c1 and c2 are real and positive, (z + c1)(z + c2) = c1c2 + (c1 + c2)z + z2. Either
way, the resulting quadratic polynomial is of the form h2

1 + 2h2z + z2, with h1�h2 > 0,
and in this parameterization c1�2 = h2 ± √

h2
2 − h2

1. The same argument applies to the
MA polynomial. Thus, we can parameterize {cj}pj=1 and {gj}p−1

j=1 in terms of the vector
h = (hc1� � � � �h

c
p�h

g
1� � � � �h

g
p−1)

′ ∈ [0�∞)2p−1, where for p odd, cp = hcp, and for p even,
gp−1 = hgp−1.

Note that the function λ2 �→ (λ2 + c2
1)(λ

2 + c2
2) potentially has a local minimum at λ=√−(c2

1 + c2
2)/2 = √

h2
1 − 2h2

2 ≤ h1. At the same time, the Nyquist frequency of N discrete
limited-information observations is Nπ. Thus restricting each value of h to the interval
[0�Nπ] still provides full flexibility of the rational spectral density function (9) over the
relevant frequency band, and we will impose this restriction in the following.

5. APPLICATIONS

This section describes two applications of the GLTU(p) model and the limited-
information framework of the last section. The first application considers the popular
Campbell and Yogo (2006) hypothesis test of no predictability in the presence of a per-
sistent predictor. This test is derived under the assumption that the persistence is of the
LTU form, and we consider its size when in fact the persistence is generated by a GLTU(2)
model. We find that empirically plausible values of the GLTU(2) parameters for the U.S.
price–dividend log ratio from 1926:12–2018:5 induce large size distortions.

Our second application concerns the quantification of mean reversion in real exchange
rates predicted by the theory of purchasing power parity, applied to the long-span data
assembled by Lothian and Taylor (1996). We conduct Bayesian inference about the degree
of mean reversion in the GLTU(p) model for p= 1�2� � � � �5. We find that the results for
p > 1 are quite different from those for the p= 1 LTU model, and that the LTU model
provides a substantially worse fit.

Both applications thus show that the standard approach of modelling persistent time
series with the LTU model yields potentially misleading empirical conclusions, suggesting
a need for the greater flexibility provided by the GLTU(p) model.
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5.1. Predictive Regression With a Persistent Predictor

Let yT�t denote the excess stock return in period t, and let xT�t−1 denote a persistent
potential predictor variable observed at t−1, such as the price–dividend log ratio. A stan-
dard LTU formulation of this setup is

yT�t = μy +βxT�t−1 + et� (17)

(1 − ρTL)(xT�t −μ)= ut� (18)

where ρT = 1 − c/T for fixed c > 0, and the mean-zero disturbances (et�ut) are weakly
dependent with correlation reu. The null hypothesis of no predictability amounts to H0 :
β= 0, against the alternative that H1 : β = 0.

As is well understood, the OLS estimator of β in this setup is biased under reu = 0,
invalidating standard inference based on the t-statistic on β in (17). While the bias is a
function of c, and hence not consistently estimable, several approaches have been devised
to obtain valid inference: see, for instance, Elliott and Stock (1994), Cavanagh, Elliott,
and Stock (1995), Campbell and Yogo (2006), Jansson and Moreira (2006), and Elliott,
Müller, and Watson (2015). These tests have local asymptotic power against alternatives
of the form β = b/T , b = 0, but their construction is predicated on the LTU form (18)
of predictor persistence. Magdalinos and Phillips (2009) and Kostakis, Magdalinos, and
Stamatogiannis (2015) devise an approach that focusses on higher frequency variability
of the predictor, which recovers standard normal null distributions for test statistics. This
presumably provides robustness also under alternative forms of predictor persistence, al-
though at the cost of no asymptotic local power in the β= b/T neighborhood of the null
hypothesis.3 Finally, Wright (2000b) suggested an ingenious approach that does not re-
quire any assumptions about the properties of xT�t for its validity (also see Lanne (2002)):
Under the null hypothesis of H0 : β = 0 in (17), yT�t recovers the true prediction errors
et up to a constant, so a test of stationarity of yT�t does not overreject irrespective of the
properties of the predictor xT�t . Furthermore, adapting the arguments leading to Theo-
rem 4 of Wright (2000b) shows that such a test has nontrivial asymptotic power under
local alternatives with β= β0 + b/T and xT�t satisfying T−1/2(xT��·T � −μ)⇒G(·) as long
as G is an almost sure nonzero continuous function.

The most popular approach in practice is the Campbell and Yogo (2006) test, which
corrects for the bias by forming a confidence interval for c, and a Bonferroni-type cor-
rection to the critical value. This construction crucially exploits the LTU model (18) for
the predictor.4 At the same time, it is not obvious whether empirically plausible alterna-
tive forms of persistence can induce (large) size distortions. Specifically, in contrast to
Campbell and Yogo’s assumption, suppose xT�t follows a GLTU(2) model

(1 − ρT�1L)(1 − ρT�2L)(xT�t −μ)= (1 − γT�1L)ut� (19)

Does the 10% level Campbell and Yogo (2006) test continue to reject a true null hypothe-
sis of no predictability H0 : β= 0 at most 10% of the time under such an alternative form
of persistence?

3Similarly, Kasparis, Andreou, and Phillips (2015) develop a robust approach to nonparametric predictive
regressions with potentially persistent regressors with local asymptotic power against larger alternatives.

4Technically, Campbell and Yogo (2006) assume a nonstationary LTU model with zero initial condition. We
therefore impose a zero initial condition in the empirical analysis both for the LTU and the GLTU(2) model.
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FIGURE 1.—CRSP price–dividend ratio and empirically plausible limiting log spectra.

We investigate this issue in the context of the empirical example in Campbell and
Yogo (2006), where yT�t is the monthly excess return on the NYSE/AMSE value-weighted
monthly index, and xT�t is the corresponding price–dividend log ratio, averaged over the
preceding 12 months. We updated the Campbell and Yogo (2006) data set to 1098 monthly
observations from 1926:12–2018:5 from the database of the Center for Research in Secu-
rity Prices (CRSP). The left panel in Figure 1 plots xT�t .

To obtain empirically plausible parameters of the GLTU(2) model, we first maximize
the limited-information likelihood with N = 50 as described in Section 4 in the LTU
model, yielding the MLE for c equal to 23.1. Call values of {c1� c2� g1} “empirically plau-
sible” for the GLTU(2) model (19) if the profiled value over μ and ω2 of the limited-
information likelihood is within two log-points of the LTU maximum likelihood. This def-
inition ensures that a GLTU(2)model with empirically plausible parameter values cannot
be distinguished from the baseline LTU model with much confidence.

We then compute the rejection probability of Campbell and Yogo’s (2006) nominal
10% level two-sided test of no predictability for data generated from such empirically
plausible GLTU(2) processes with T = 1098, β= 0, (et�ut)′ i.i.d. mean-zero normal and
correlation equal to reu = −0�951, which is the value of reu estimated by Campbell and
Yogo’s procedure under the LTU model assumption. (The test is invariant to translation
shifts and scale transformations of yT�t and xT�t , so the variances of et and ut , as well as the
means μ and μy are immaterial.) In Table I we report the parameter values for four fairly

TABLE I

FOUR GLTU(2) PARAMETERS AND RESULTING NULL REJECTION PROBABILITY OF THE 10% LEVEL
CAMPBELL–YOGO (2006) TEST

Example Number

1 2 3 4 LTU–MLE

Value of c1 5�0 0�7 1�3 17�2 23�1
Value of c2 230�1 308�1 191�6 264�1 NA
Value of g1 22�8 17�2 15�5 52�7 NA
Null rejection probability 48�7% 73�7% 46�4% 49�3% 5�8%
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distinct empirically plausible GLTU(2) parameters that induce severe size distortions.5
The right panel in Figure 1 plots the corresponding log spectral densities of the limiting
CARMA(2�1)model, along with the limiting Ornstein–Uhlenbeck process with c = 23�1,
that is at the limited-information MLE.

We conclude from this exercise that the validity of the Campbell and Yogo (2006) test
very much depends on the untestable assumption that the predictor persistence is of the
LTU form. Since this is arguably an unattractive assumption, a more compelling test of no
predictability is Wright’s (2000b) approach, which is asymptotically valid with nontrivial
power in the β= b/T neighborhood for the entire GLTU class.

5.2. Persistence of Deviations From Purchasing Power Parity

Lothian and Taylor (1996) assembled long-term data on the log US/UK real exchange
rate from 1791 to 1990 and estimated half-life deviations of approximately 6 years based
on an AR(1) specification. We consider the same data extended through 2016, xT�t , and
plotted in the left panel of Figure 2.6 We are interested in quantifying for how long devi-
ations from purchasing power parity persist assuming that the exchange rate xT�t follows
a GLTU(p) model.

The traditional definition of the half-life is based on the impulse response of the Wold
innovation to xT�t , which in general depends not only on the GLTU(p) parameters {cj}
and {gj}, but also on the short-run dynamics of ut . See, for instance, Andrews and Chen
(1994), Murray and Papell (2002) or Rossi (2005). At the same time, as discussed in Tay-
lor’s (2003) survey, the literature on real exchange rates emphasizes mean reversion in the
long run, and often applies corresponding augmented Dickey–Fuller regressions, which in
the context of the LTU model amount to inference about c (also see Murray and Papell
(2005) and Stock (1991)).

Impulse responses are most meaningful in the context of a structural model, where
innovations are given an explicit interpretation. But the structural interpretation of Wold
innovations to the real exchange rates is not obvious. We therefore define the half-life

FIGURE 2.—Bayesian limited-information analysis of US/UK real exchange rates.

5This adds to the analysis by Phillips (2014) and Kostakis, Magdalinos, and Stamatogiannis (2015), who
document size distortions of the Campbell and Yogo (2006) test with an AR(1) predictor that exhibits less
than LTU persistence.

6The extension is based on the FRED series DEXUSUK, SWPPPI and WPSFD49207 for recent values of
the exchange rate, and UK and US producer price indices.
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in terms of the following thought experiment: Given the model parameters, suppose we
learn that the value of the stationary process xT�t at the time t = 0 is one unconditional
standard deviation above its mean, but we don’t observe any other values of xT�t . What is
the smallest horizon τ such that the best linear predictor of xT�t given xT�0 is within 1/2
unconditional standard deviations of its mean, for all t ≥ τ?

The best linear predictor of xT�t given xT�0 is proportional to the correlation between
xT�0 and xT�t . Assuming that ut has more than two moments, Theorem 1 implies that

T−1E
[
(xT�0 −μ)(xT��sT � −μ)] →E

[
Jp(0)Jp(s)

] = b′eA|s|Σb

so that we obtain the large sample approximation

τ ≈ T inf
r

{
r :

∣∣∣∣b′eA|s|Σb
b′Σb

∣∣∣∣ ≤ 1/2 for all s ≥ r
}
� (20)

For p= 1, that is in the LTU model, this definition of a half-life is equivalent to the half-
life of the impulse response relative to the “long-run” shock ut , which in large samples
becomes the impulse response function of J1. But for p> 1, this equivalence breaks down,
since the impulse response function of Jp is equal to 1[s ≥ 0]b′eAse (cf. (6) and (7)), while
the autocovariance function is b′eA|s|Σb. We explore this and other possible alternative
definitions of the half-life in the Appendix.

In order to avoid evaluating the matrix exponential in (20), note that b′eA|s|Σb can be
arbitrarily well approximated by the autocovariance function of the discrete stationary
state space system (14) and (15) as T0 → ∞, so that

τ ≈ T inf
r

{
r :

∣∣∣∣b′(Ip + A/T0)
�sT0�Ω0

T0
b

b′Ω0
T0

b

∣∣∣∣ ≤ 1/2 for all s ≥ r
}
� (21)

We again find that choosing T0 = 1000 generates numerically stable results.
We consider the GLTU model with p = 1�2� � � � �5, and conduct inference based on

the limited-information likelihood for N = 50 as discussed in Section 4. We choose the
usual improper uninformative priors for the location and scale parameters μ and ω2. For
{cj}pj=1 and {gj}p−1

j=1 , we employ the h parameterization of Section 4, collected in the vector
h ∈ [0�50π]2p−1.

A prior on h may be obtained by considering its implication for the smoothness of
the resulting spectral density. We focus on the second derivative of the log-spectrum as a
measure of this smoothness. A calculation detailed in the Appendix shows that the special
form (9) of the CARMA spectrum fJp leads to the computationally convenient expression

1
8π

∫ ∞

−∞

(
∂2

∂λ2 ln fJp(λ)
)2

dλ

=
p∑

k�j=1

1
(ck + cj)3 +

p−1∑
k�j=1

1
(gk + gj)3 − 2

p∑
k=1

p−1∑
j=1

1
(ck + gj)3 � (22)

Denote the right hand side of (22) by ψ(h), with {cj}pj=1 and {gj}p−1
j=1 considered functions

of h. Our baseline prior on h ∈ [0�50π]2p−1 is then of the form πb(h)∝ exp[−κψ(h)] for
some κ ≥ 0. Roughly speaking, the overall persistence of Jp is determined by the rate at
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FIGURE 3.—Random Log-Spectral Density Draws from the Baseline Prior.

which fJp(λ) declines. The prior πb is agnostic about this rate. Rather, it penalizes the
amount of variation around the average decline. Sufficiently large values of κ > 0 thus
ensure that even with large p, the prior strongly favors spectra of overall smooth shape.
Visual inspection of prior draws, as illustrated in Figure 3 for p = 5, lead us to choose
κ = 200 for our baseline empirical specification. Additional calculations detailed in the
Appendix show that the following results are not sensitive to this choice.

The main objective of our empirical illustration is to demonstrate that the GLTU model
can yield substantially different empirical results about the half-life. In order to isolate this
effect, we adjust the baseline smoothness prior πb to ensure that the implied prior for the
half-life does not mechanically depend on p. Let τ(h) be the half-life in (20) implied by
a given value of h. Then we employ the prior π(h)∝ πb(h)πτ(τ(h)), where the function
πτ : R �→ [0�∞) is such that the prior distribution of τ(h), measured in years, is uniform
on the interval [3�50] under π.

The posterior is obtained from a random walk Metropolis–Hastings algorithm after
analytically integrating out (μ�ω2). With the Kalman filter approximation to the limited-
information likelihood of Section 4, the corresponding half-life approximation (21), and
the expression (22), evaluation of the posterior density is very fast. We provide additional
computational details in the Appendix.

The second and third rows of Table II provide summary statistics for the posterior half-
life for 1 ≤ p≤ 5, and the right panel of Figure 2 plots the posterior densities. For p= 1,
the posterior for the half-life is unimodal with a mode of around 4.0 years and a median
of 5.9, more or less in line with the original results of Lothian and Taylor (1996). But
letting p > 1 leads to posteriors with much more mass at substantially longer half-lives.
This accords qualitatively with Murray and Papell’s (2005) finding of longer half-life point
estimates when allowing for many lags in the autoregression, although their half-lives are
computed from impulse responses or sums of autoregressive coefficients, and are thus not
directly comparable.

TABLE II

BAYESIAN LIMITED-INFORMATION ANALYSIS OF US/UK REAL EXCHANGE RATES

p= 1 p= 2 p= 3 p= 4 p= 5

Posterior median half-life 5.9 21.6 21.2 22.3 22.3
90% posterior interval (3�5;23�5) (4�6;45�4) (4�3;45�5) (4�9;45�8) (5�1;45�9)
Bayes factor relative to p= 1 1.0 36.5 27.0 33.9 27.3
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Remarkably, the posterior densities in Figure 3 for p≥ 2 are very similar to each other.
It seems that once the model is flexible enough, the implications settle, with a wide pos-
terior distribution for the half-life with a median around 22 years.

The Bayes factors relative to the LTU (p= 1) model in Table II indicate a strong pref-
erence by the data for values of p > 1, and are quite similar for the values of p > 1. In
the Appendix we derive frequentist tests of H0 : p= 1 against H1 : p> 1. These tests also
reject at the 1% level on the US/UK real exchange rate data with N = 50.

Overall, these results suggest that the LTU model does not adequately account for the
long-run properties of this data, and that accounting for them in a more flexible manner
yields substantially longer half-lives of PPP deviations.

6. CONCLUSION

This paper introduces the GLTU(p) model as a natural generalization of the popular
local-to-unity approach to modelling stationary time series persistence. The main theoret-
ical result concerns the richness of this model class: The asymptotic properties of a large
class of persistent processes that is not entirely distinct from an I(1) benchmark can be
well approximated by some GLTU(p) model.

We further suggest a straightforward approximation to the limited-information asymp-
totic likelihood of the GLTU(p) model, and derive a computationally convenient prior
for the GLTU parameters that penalizes non-smooth spectral densities. The resulting
limited-information Bayesian analysis is straightforward to implement and, for p large,
flexibly adapts to a wide range of potential low-frequency behavior. The GLTU(p)model
thus seems a convenient starting point for the modelling of persistent time series in
macroeconomics and finance.

APPENDIX

A.1. Proof of Theorem 1

We first show that xT�t has representation (10) and (11). Set
∏p

j=1(z − ρT�j) = zp +∑p

j=1φT�jz
p−j and

∏p−1
j=1 (z− γT�j)= zp−1 + ∑p−2

j=0 θT�jz
j . The usual state-space representa-

tion of the ARMA(p�p− 1) process xT�t with innovations ut is

xT�t = θ′
TVT�t +μ� (23)

VT�t = �TVT�t−1 + eut� (24)

where

VT�t =

⎛
⎜⎜⎜⎜⎝
vT�t−p+1

vT�t−p+2
���

vT�t−1

vT�t

⎞
⎟⎟⎟⎟⎠ � �T =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
���

���
���

� � �
���

0 0 0 · · · 1
−φT�p −φT�p−1 −φT�p−2 · · · −φT�1

⎞
⎟⎟⎟⎟⎠ �

θT =

⎛
⎜⎜⎜⎜⎝
θT�0
θT�1
���

θT�p−2

1

⎞
⎟⎟⎟⎟⎠ �
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Let c = (c1� � � � � cp)
′ and g = (g1� � � � � gp−1)

′ with elements ordered ascendingly by
the real parts, and define the corresponding vectors ρT = (ρT�1� � � � � ρT�p)

′ and γT =
(γT�1� � � � � γT�p−1)

′.
For any a = (a1� � � � � ak)

′ ∈ C
k, k ∈ {p− 1�p} with Re(aj) ≤ Re(aj+1), let J(a) be the

k× k Jordan matrix with Jordan blocks corresponding to common values of aj , and let
Q(a) be the p× k matrix where the m columns of Q(a) corresponding to the value a of
multiplicity m contain the values dl

dzl
zj−1|z=a/ l!, j = 1� � � � �p, l = 0� � � � �m− 1. Since �T

and A are companion matrices, and the roots of zp + ∑p

j=1φT�jz
p−j and a(z) are ρT and

−c, respectively, they allow the Jordan decomposition (cf. Brand (1964))

�T = Q(ρT )J(ρT )Q(ρT )
−1� (25)

A = Q(−c)J(−c)Q(−c)−1� (26)

From (26), we also have

I + A/T = Q(−c)
(
I + J(−c)/T

)
Q(−c)−1� (27)

Let F be the p×p lower triangular Pascal matrix, that is, the first j entries in row j of F
contain the jth binomial coefficients, and let DT = diag(1�T−1� � � � �T 1−p). Further, let Dc

T

be a diagonal matrix where the diagonal elements corresponding to a Jordan block of A of
size m are equal to 1�T� � � � �Tm−1. Then, with PT = FDT we have from a straightforward
calculation

Q(ρT )= PTQ(−c)Dc
T �

Dc
TJ(ρT )

(
Dc
T

)−1 = I + J(−c)/T
(28)

so that from (25) and (27)

�T = PT (I + A/T)P−1
T � (29)

Furthermore, since zp−1 + ∑p−2
j=0 θT�jz

j = ∏p−1
j=1 (z − γT�j), we have θ′

TQ(γT ) = 0, and
similarly, b′Q(−g) = 0. Now as in (28), Q(γT ) = PTQ(−g)Dg

T for some diagonal matrix
Dg
T with nonzero diagonal elements, so that also θ′

TPTQ(−g)= 0. Since Q(−g) is of full
column rank (cf. Theorem 2 of Brand (1964)), we conclude that θ′

TPT is a scalar multiple
of b′. The last element of b′ is equal to one, and the last element of θ′

TPT is equal to T 1−p,
so that

θ′
TPT = T 1−pb′� (30)

Finally, from PTe = T 1−pe,

P−1
T e = Tp−1e� (31)

From (29), (30) and (31) it follows that the system (23) and (24) can equivalently be
written as (10) and (11) with ZT�t = T 1−pP−1

T VT�t−1.
For an arbitrary valued matrix B, let ‖B‖ its largest singular value. In the following, let

T be large enough so that |ρT�j|2 = 1 − 2 Re(cj)/T + |cj|2/T 2 ≤ (1 − 1
2 Re(c1)/T)

2 for all
j = 1� � � � �p, so that from (27), also

‖I + A/T‖ ≤ 1 − 1
2

Re(c1)/T� (32)
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Now from (10) and (11), for any fixed integer K > 0,

T−1/2(xT��sT � −μ)=RT(s)+ T−1/2b′
�sT �∑

t=−KT+1

(I + A/T)�sT �−teut�

where RT(s) = T−1/2b′(I + A/T)�sT �+KTZ−KT and Z−KT = ∑∞
t=0(I + A/T)teu−KT−t , and

we write Zt for ZT�t to ease notation. Since the autocovariances of ut are absolutely
summable, the spectral density of ut exists and is bounded on [−π�π]. Let a bound
be σ̃2

u/(2π). For any given T and w ∈ R
p, the variance of the time invariant linear fil-

ter w′Z−KT is thus weakly smaller than the variance of w′Z̃−KT , where Z̃−KT = ∑∞
t=0(I +

A/T)teũ−KT−t with ũt ∼ iid(0� σ̃2
u). Furthermore

Var
[
T−1/2Z̃−KT

] = σ̃2
uT

−1
∞∑
t=0

(I + A/T)tee′(I + A′/T
)t

so that from (32)

∥∥Var
[
T−1/2Z̃−KT

]∥∥ ≤ σ̃2
u

∥∥ee′∥∥T−1
∞∑
t=0

(
1 − 1

2
Re(c1)/T

)2t

=O(1)�

Thus, ‖T−1/2Z−KT‖ =Op(1). Using again (32), we obtain

sup
0≤s≤1

∣∣RT(s)∣∣ ≤ ‖b‖ · ∥∥T−1/2Z−KT
∥∥ · sup

s

(
1 − 1

2
Re(c1)/T

)�sT �+KT

≤ ‖b‖ · ∥∥T−1/2Z−KT
∥∥ · exp

[
−1

2
KRe(c1)

]
(33)

so that RT(·) converges in probability as K → ∞ in the sense that for any ε > 0, there
exists K =Kε such that lim supT→∞ P(sup0≤s≤1 |RT(s)|> ε) < ε.

Furthermore, under Condition 1, WT(·)= T−1/2
∑�·T �

t=−�KT � ut ⇒W (·)−W (−K), where
W is a Wiener process on the interval [−K�1] of variance ω2 normalized to W (0)= 0. By
summation by parts,

T−1/2b′
�sT �∑

t=−�KT �+1

(I + A/T)�sT �−teut

= b′eWT(s)− b′(I + A/T)�sT �+�KT �−1eT−1/2u−�KT �

+ b′AT−1
�sT �∑

t=−�KT �+2

(I + A/T)�sT �−teWT

(
t − 1
T

)

⇒ b′e
(
W (s)−W (−K)) + b′A

∫ s

−K
eA(s−r)e

(
W (r)−W (−K))dr

= b′
∫ s

−K
eA(s−r)edW (r)=R0(s)+ Jp(s)�
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where R0(s)= −b′eA(s+K)X(−K) with X(−K)∼N (0�Σ) independent of W as in (7), the
convergence relies on the well-known identity esA = limT→∞(I + A/T)�sT � for all s, and
the second equality follows from the stochastic calculus version of integration by parts.
Since sup0≤s≤1 ‖eA(s+K)‖ → 0 as K → ∞, sup0≤s≤1 |R0(s)| converges in probability to zero
asK→ ∞. As noted below (33), the same holds for RT(·). But convergence in probability
implies convergence in distribution, and K was arbitrary, so the result follows.

A.2. Proof of Theorem 2

Overview. The proof of Theorem 2 relies heavily on the framework developed by
Ibragimov and Rozanov (1978), denoted IR78 in the following. As discussed there, a
continuous time Gaussian process on the unit interval can be described in terms of a
countably infinite sequence of random variables (cf. (42) and the discussion in the proof
of Lemma 4 below), whose distribution can be expressed in terms of the spectral den-
sity of the underlying process (cf. (41) and the discussion below (42)). The challenge in
the proof of Theorem 2 is to establish that the “infinite tail” of this sequence contributes
negligibly to the total variation distance. Intuitively, this must hold for some appropriate
definition of tail if the two measures are equivalent, and appropriate equivalence results
are obtained by IR78. But the construction of this tail must be such that its contribution is
negligible uniformly over a sufficiently rich class of potential approximating processes. To
this end, the sequence of random variables (and hence its tail) is constructed as a function
of the properties of two Gaussian processes whose spectral densities form an upper and
lower bound on the class of potential approximating spectral density functions (cf. (37),
(38) and (39)), which turns out to be suitable to obtain such a uniform bound (cf. (44),
(45) and (48)). With the contribution from the tail controlled, the approximability of the
distribution of the finite dimensional non-tail part of the sequence of random variables
follows with some additional work from Lemmas 1 and 2 below.

We first state Lemmas 1 and 2. We write z∗ for the conjugate of the complex number z,
and v∗ for the conjugate transpose of a complex vector v.

LEMMA 1: Let C0 be the space of continuous real valued functions on [0�∞) which vanish
at infinity. For any ϑ0 ∈ C0 and ε > 0, there exists an integer q≥ 1 such that supλ≥0 |ϑ0(λ)−
ϑ(λ)|< ε, where ϑ is a rational function of the form

ϑ(λ)=

q−1∑
j=0

enj λ
2j

q∏
j=1

(
λ2 + edj

) (34)

with edj > 0 and enj ∈ R, j = 0� � � � � q.

PROOF: Note that functions of the form ϑ form a vector subspace of C0 which is closed
under multiplication of functions, that is, they form a sub-algebra on C0. It is easily seen
that this sub-algebra separates points and vanishes nowhere. The locally compact version
of the Stone–Weierstrass Theorem thus implies the result. Q.E.D.

LEMMA 2: Let ξp(λ2) be a polynomial with real coefficients of order p− 1 in λ2 such that
ξp(λ

2) > 0 for all λ ∈R, and with unit coefficient on (λ2)p−1. Then there exists polynomial b
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of order p− 1 of the form b(z)= ∏p−1
j=1 (z+ gj) with gj as described in Condition 1(ii) such

that ξp(λ2)= |b(iλ)|2 for all λ ∈ R.

PROOF: By the fundamental theorem of algebra, and since ξp(λ2) > 0 for all λ ∈ R,
ξp(λ

2) = ∏p−1
j=1 (λ

2 + ηj), where the ηj ’s are of two types: real and positive, or complex
with positive real part, and in conjugate pairs. Now for 0 < ηj ∈ R, λ2 + ηj = |iλ+ gj|2

with gj = √
ηj . For ηj = η∗

j′ ∈C for j = j′,
(
λ2 +ηj

)(
λ2 +ηj′

) = λ4 + 2 Re(ηj)λ2 + |ηj|2 = |iλ+ gj|2
∣∣iλ+ g∗

j

∣∣2
�

where
√

2gj =
√|ηj| + Re(ηj)+ √|ηj| − Re(ηj)i. Q.E.D.

Without loss of generality, assume ω2 = 2π. In the following, we write G1 for G, and
f1 for its spectral density. Let f0(λ)= (1 + λ2)−1 be the spectral density of the Ornstein–
Uhlenbeck process with mean reversion parameter equal to unity, denoted G0, and let

δ0 = 1
2

min
(

inf
λ

(
1 + λ2

)
f1(λ)�1

)
� (35)

Let P0 and P1 be the measures of G0 and G1, respectively. By Theorem III.17 of IR78,
equivalence of P0 and P1 implies

∫ (
f1(λ)

f0(λ)
− 1

)2

dλ <∞ (36)

and here and below, integrals are over the entire real line unless indicated otherwise.
Define

f (λ)= max
(
f1(λ)� f0(λ)

) + δ0(
1 + λ2

)2 � (37)

f (λ)= min
(
f1(λ)� f0(λ)

) − δ0(
1 + λ2

)2 (38)

and let f2 be some function satisfying

f (λ)≤ f2(λ)≤ f (λ) for all λ� (39)

From (36), ∫ (
f (λ)

f0(λ)
− 1

)2

dλ <∞�

∫ (
f (λ)

f0(λ)
− 1

)2

dλ <∞ (40)

so that also for all f2 satisfying (39),
∫
(f2(λ)/f0(λ)− 1)2 dλ <∞. Since f , f and f2 are

nonnegative integrable real functions, there exist corresponding correlation functions that
are positive definite. By the development in Section I.2 of IR78, there hence exist corre-
sponding stationary Gaussian processes G, G and G2 with spectral densities f , f and f2

and measures P , P and P2, respectively. Theorem III.17 of IR78 and (40) implies that P ,
P and P2 are equivalent to P0, and hence also to P1.
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For ψ�ϕ : R �→ C functions of the type ψ(λ)= ∑k

l=1 cle
iλtl for some k≥ 1, tl ∈ [0�1] and

cl ∈ R, define the inner product

〈ψ�ϕ〉F1 =
∫
ψ(λ)ϕ(λ)∗f1(λ)dλ� (41)

Let L(F1) be the corresponding Hilbert space. Analogously, define the inner products
〈ψ�ϕ〉F2 , 〈ψ�ϕ〉F and 〈ψ�ϕ〉F , and corresponding Hilbert spaces L(F2), L(F) and L(F).
Since the measures P1, P2, P and P are equivalent, so are the Hilbert spaces, as noted on
p. 71 of IR78. Define the linear operator A : L(F1) �→ L(F2) via Aψ = ψ, let A∗ be its
adjoint, and define the self-adjoint operator � : L(F1) �→ L(F1) via �ψ= ψ−A∗Aψ, so
that

〈�ψ�ϕ〉F1 = 〈ψ�ϕ〉F1 − 〈ψ�ϕ〉F2

and analogously for � and � (that is, 〈�ψ�ϕ〉F1 = 〈ψ�ϕ〉F1 − 〈ψ�ϕ〉F and 〈�ψ�ϕ〉F1 =
〈ψ�ϕ〉F1 − 〈ψ�ϕ〉F). By Theorem III.4 of IR78, equivalence of the measures P1, P2, P
and P implies that the operators �, � and � are Hilbert–Schmidt.

Let ψk be an arbitrary orthonormal sequence in L(F1), and define the n× 1 vector ηn
of Gaussian complex valued random variables

η(ψk)=
∫
ψk(λ)d�l(λ) for k= 1� � � � � n� (42)

where �l is the stochastic spectral measure such that Gl(s) = ∫
eiλs d�l(λ), l = 1�2 (cf.

Chapter I.6 of IR78). Then E[η(ψk)] = 0 under both P1 and P2, E[η(ψj)η(ψk)] =
〈ψj�ψk〉F1 = 1[j = k] under P1, and E[η(ψj)η(ψk)] = 〈ψj�ψk〉F2 under P2. Thus, un-
der P1, ηn ∼ N (0� In), and under P2, ηn ∼ N (0�Σn), where Σn has elements 〈ψj�ψk〉F2 .
Since P1 and P2 are equivalent, Σn is positive definite for any n (cf. p. 76 of IR78). Let
vkn ∈ C

n, k = 1� � � � � n be a set of eigenvectors of Σn with associated eigenvalues σ2
kn, so

that v∗
knηn ∼ iidN (0�1) under P1, and v∗

knηn are independent N (0�σ2
kn) under P2. Let dn

be the entropy distance between the distribution of ηn under P1 and P2, that is the sum
of the two corresponding Kullback–Leibler divergences. By a straightforward calculation
(cf. equation (III.2.4) of IR78), dn = 1

2

∑n

k=1[(1/σ2
kn − 1)+ (σ2

kn − 1)]. Define

Dn =
n∑
k=1

(
1 − σ2

kn

)2

and with λk(B) denoting the kth largest eigenvalue of the Hermitian matrix B, we have

Dn =
n∑
k=1

(
1 − λk(Σn)

)2 =
n∑
k=1

λk
(
(In −Σn)

2
) = tr

(
(In −Σn)

2
)

so that

Dn =
n∑

j�k=1

∣∣〈ψj�ψk〉F1 − 〈ψj�ψk〉F2

∣∣2 =
n∑

j�k=1

∣∣〈�ψj�ψk〉F1

∣∣2
� (43)

The following straightforward Lemma establishes a useful relationship between dn and
Dn.
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LEMMA 3: For any 0< δ< 1/4, Dn < δ implies dn < δ.

PROOF: Note that
∑n

k=1(σ
2
k −1)2 < 1/4 implies 1/2<σ2

k < 3/2 for all k= 1� � � � � n, but
for such σ2

k, 1
2 [( 1

σ2
k

− 1)+ (σ2
k − 1)] ≤ (σ2

k − 1)2, which implies the result. Q.E.D.

Let Σn be the n × n Hermitian matrix with elements 〈ψj�ψk〉F . Then for any v =
(v1� � � � � vn)

′ ∈ C
n, v∗(Σn −Σn)v = ∑n

j�k=1 v
∗
kvj(〈ψj�ψk〉F̄ − 〈ψj�ψk〉F2)= ∫ ‖∑n

j=1 vjψj‖2 ×
(f̄ (λ) − f2(λ))dλ ≥ 0 from (39). Therefore, by Weyl’s inequality, σ2

kn = λk(Σn) ≥
λk(Σn)+ λn(Σn −Σn)≥ λk(Σn)= σ2

kn for all k, so that

Dn =
n∑

j�k=1

∣∣〈�ψj�ψk〉F1

∣∣2 =
n∑
k=1

(
1 − σ2

kn

)2 ≥
n∑
k=1

1
[
σ2
kn > 1

](
1 − σ2

kn

)2
�

By an analogous argument, also

Dn =
n∑

j�k=1

∣∣〈�ψj�ψk〉F1

∣∣2 ≥
n∑
k=1

1
[
σ2
kn < 1

](
1 − σ2

kn

)2

so that

Dn ≤Dn +Dn� (44)

Now let ϕk be a complete set of eigenvectors of the operator �, with associated eigen-
values 1 −σ2

k, that is �ϕk = (1 −σ2
k)ϕk, and ϕk form an orthonormal basis in L(F1). De-

fine ϕ
k

and σ2
k analogously relative to the operator �. Since � and � are Hilbert–Schmidt,∑∞

k=1(1 − σ2
k)

2 <∞ and
∑∞

k=1(1 − σ2
k)

2 <∞, so that for any ε > 0, there exists nε such
that

∑∞
k=nε(1 −σ2

k)
2 < ε/2 and

∑∞
k=nε(1 −σ2

k)
2 < ε/2. Let L

0

ε ⊂L(F1) and L0
ε ⊂L(F1) be

the spaces spanned by ϕk and ϕ
k
, k= 1� � � � � nε, respectively, and let L1

ε be the orthogonal

complement of L0
ε =L0

ε ∪L0
ε relative to 〈·� ·〉F1 , so that L(F1)=L0

ε ∪L1
ε. Note that L0

ε and
L1
ε do not depend on f2. Let L

1

ε be the space spanned by ϕk, k= nε + 1� nε + 2� � � � . For
any orthonormal sequence ψk in L1

ε, since L1
ε ⊂L1

ε

Dn =
n∑

j�k=1

∣∣〈�ψj�ψk〉F1

∣∣2 ≤
n∑
j=1

‖�ψj‖2
L

1
ε

=
n∑
j=1

∞∑
k=nε+1

∣∣〈�ψj�ϕk〉F1

∣∣2

=
∞∑

k=nε+1

n∑
j=1

∣∣〈�ϕk�ψj〉F1

∣∣2
�

where the inequality follows from Bessel’s inequality. A further application yields

∞∑
k=nε+1

n∑
j=1

∣∣〈�ϕk�ψj〉F1

∣∣2 ≤
∞∑

k=nε+1

‖�ϕk‖2
L

1
ε

=
∞∑

j�k=nε+1

(
1 − σ2

k

)2∣∣〈ϕj�ϕk〉F1

∣∣2 =
∞∑

k=nε+1

(
1 − σ2

k

)2

with the right-hand side bounded above by ε/2 by the definition of nε. Thus Dn < ε/2
and, by the analogous argument, also Dn ≤ ε/2. Thus, from (44), for any orthonormal
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sequence ψk in L1
ε,

Dn ≤ ε� (45)

Now let ψεk, k= 1� � � � �mε ≤ 2nε be an orthonormal basis of L0
ε, and let ψεk, k=mε +

1�mε + 2� � � � be an orthonormal basis of L1
ε, so that ψεk, k = 1�2� � � � is an orthonormal

basis of L(F1). Note that the sequence ψεk does not depend on f2. Let Uεm be the σ-field
generated by the Gaussian random variables η(ψεk) as defined in (42) for k = 1� � � � �m,
l= 1�2, and let Uε be the σ-field generated by η(ψεk), k= 1�2� � � � . Define

Dε
m =

m∑
j�k=1

∣∣〈�ψεj �ψεk〉F1

∣∣2
�

We have the following Lemma.

LEMMA 4: For all 0 < ε0 < 1/2, supmD
ε
m < ε

2
0 implies that the total variation distance

between P1 and P2 is smaller than ε0.

PROOF: As discussed on p. 65 of IR78, the distribution on the σ-field Uε equivalently
characterizes the distribution of Gl relative to the σ-fields generated by the cylindric sets
of the paths Gl(·) under Pl, l= 1�2, so it suffices to show that

sup
A∈Uε

∣∣P2(A)− P1(A)
∣∣ ≤ ε0� (46)

Let dεm be the entropy distance between the distribution of η(ψεk), k= 1� � � � �m under P1

and P2. By Lemma 3, dεm ≤ ε2
0. Thus, by Pinsker’s inequality

sup
Am∈Uεm

∣∣P2(Am)− P1(Am)
∣∣ ≤ ε0 for all m� (47)

Now suppose (46) does not hold. Then there exists A ∈ Uε such that P2(A)− P1(A) >
ε0. Construct a sequence of events Am ∈ Uεm such that Pl(Am �A)→ 0 for l = 1�2 as on
p. 77 of IR78, where Am �A is the symmetric difference Am �A= (Am ∪A)\(Am ∩A).
Then from A ⊆ Am ∪ (Am � A) and Am ⊆ A ∪ (Am � A), we have |Pl(A)− Pl(Am)| ≤
Pl(Am � A) for l = 1�2. We thus obtain P2(Am)− P1(Am)→ P2(A)− P1(A) > ε0, con-
tradicting (47), and the lemma is proved. Q.E.D.

Given that the choice of 0< ε was arbitrary, in light of Lemma 4 it suffices to show that
for some CARMA implied f2 satisfying (39), supmD

ε
m < 2ε, say. Now for allm>mε, from

(43)

Dε
m ≤

m∑
j�k=mε+1

∣∣〈�ψεj �ψεk〉F1

∣∣2 + 2
mε∑
j=1

m∑
k=1

∣∣〈�ψεj �ψεk〉F1

∣∣2

≤ ε+ 2
mε∑
j=1

m∑
k=1

∣∣〈�ψεj �ψεk〉F1

∣∣2
� (48)

where the second inequality follows from (45). Further

m∑
k=1

∣∣〈�ψεj �ψεk〉F1

∣∣2 =
m∑
k=1

∣∣∣∣
〈(
f2

f1
− 1

)
ψεj �ψ

ε
k

〉
F1

∣∣∣∣
2
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≤
〈(
f2

f1
− 1

)
ψεj �

(
f2

f1
− 1

)
ψεj

〉2

F1

=
∫ (

f2(λ)

f1(λ)
− 1

)2∣∣ψεj (λ)∣∣2
f1(λ)dλ�

where the inequality follows from Bessel’s inequality by viewing L(F1) as a subspace of
the Hilbert space of square integrable functions with inner-product 〈·� ·〉F1 . Thus

sup
m

Dε
m ≤ ε+ 2

mε∑
j=1

∫ (
f2(λ)

f1(λ)
− 1

)2∣∣ψεj (λ)∣∣2
f1(λ)dλ� (49)

From equation (II.1.3) of IR78 and by condition (ii) of Theorem 2, every ψ ∈L(F1) can
be represented in the form ψ(λ)= c0 + (1 + iλ) ∫ 1

0 e
iλtc(t)dt for some real c0 and some

square integrable function c : [0�1] �→ R. Thus |ψ(λ)| ≤ |c0| +
√

1 + λ2
∫ 1

0 |c(t)|dt, so that
supλ |ψ(λ)|2f1(λ) <∞. Thus, (49) implies that for some Mε <∞ that does not depend
on f2, for all f2 satisfying (39),

sup
m

Dε
m ≤ ε+Mε

∫ (
f2(λ)

f1(λ)
− 1

)2

dλ� (50)

It thus suffices to show that there exists a CARMA implied f2 satisfying (39) that makes∫ ∞
0 (f2(λ)/f1(λ)− 1)2 dλ arbitrarily small.
Let h1(λ)= f1(λ)/f0(λ)− 1 and h2(λ)= f2(λ)/f0(λ)− 1. Recalling the definition of δ0

in (35), we have

∫ ∞

0

(
f2(λ)

f1(λ)
− 1

)2

dλ≤ 1
4
δ−2

0

∫ ∞

0

(
h1(λ)− h2(λ)

)2
dλ

and it suffices to show that for any ε1 > 0, there exists a CARMA implied h2 such that∫ ∞
0 (h1(λ)− h2(λ))

2 dλ < 2ε1.
For any h̃1(λ), from (a− b)2 ≤ 2(a2 + b2),

∫ ∞

0

(
h1(λ)− h2(λ)

)2
dλ=

∫ ∞

0

(
h1(λ)− h̃1(λ)− h2(λ)+ h̃1(λ)

)2
dλ

≤ 2
∫ ∞

0

(
h1(λ)− h̃1(λ)

)2
dλ+ 2

∫ ∞

0

(
h2(λ)− h̃1(λ)

)2
dλ�

By (36),
∫ ∞

0 h1(λ)
2 dλ <∞. Thus, there exists K <∞ such that

∫ ∞
K
h1(λ)

2 dλ < ε1/2. Let
χK(λ)= 1 for λ≤K, χK(λ)= 0 for λ≥K+ 1 and χK(λ)=K+ 1 −λ otherwise, and de-
fine h̃1(λ)= χK(λ)h1(λ). Then

∫ ∞
0 (h1(λ)− h̃1(λ))

2 dλ≤ ε1/2, and since f1 is continuous
by standard Fourier arguments (see, for instance, Proposition 4.1 on p. 87 in Stein and
Shakarchi (2005)), so is h̃1. It thus suffices to show that there exists a CARMA implied h2

that makes
∫ ∞

0 (h2(λ)− h̃1(λ))
2 dλ smaller than ε1/2.
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Now ∫ ∞

0

(
h2(λ)− h̃1(λ)

)2
dλ=

∫ ∞

0

(
1 + λ2

)−2(
ϑ2(λ)− ϑ̃1(λ)

)2
dλ

with ϑ2(λ)= (1 + λ2)h2(λ) and ϑ̃1(λ)= (1 + λ2)h̃1(λ). Note that ϑ̃1 is continuous, and
limλ→∞ ϑ̃1(λ)= 0. Thus, by Lemma 1, for any δ > 0, there exists an integer q and a ratio-
nal function ϑ2 of the form (34) such that

sup
λ

∣∣ϑ2(λ)− ϑ̃1(λ)
∣∣< δ� (51)

We have
∫ ∞

0 (1 + λ2)−2(ϑ2(λ)− ϑ̃1(λ))
2 dλ≤ δ2

∫ ∞
0 (1 + λ2)−2 dλ, which can be made ar-

bitrarily small by choosing δ small. From the definitions of ϑ2 and h2, we have

f2(λ)= 1
1 + λ2 + ϑ2(λ)(

1 + λ2
)2

so the implied f2(λ) is a rational function in λ2 of degree p= q+ 2 in the denominator
and p− 1 in the numerator.

Furthermore, for all δ < δ0, we have uniformly in λ,

f2(λ) ≤ 1
1 + λ2 + ϑ̃1(λ)+ δ0(

1 + λ2
)2

= 1
1 + λ2 + χK(λ)

((
1 + λ2

)2
f1(λ)− (

1 + λ2
)) + δ0(

1 + λ2
)2

= χK(λ)f1(λ)+ (
1 −χK(λ)

)
f0(λ)+ δ0(

1 + λ2
)2 ≤ f (λ)

and similarly,

f2(λ) ≥ 1
1 + λ2 + ϑ̃1(λ)− δ0(

1 + λ2
)2

= χK(λ)f1(λ)+ (
1 −χK(λ)

)
f0(λ)− δ0(

1 + λ2
)2 ≥ f (λ)

so that f2 satisfies (39). In particular, since f (λ) > 0 for all λ, the numerator of f2(λ) is
a positive rational function, so by Lemma 2, f2 has the form of the spectral density of a
CARMA(p�p− 1) process.

A.3. Derivation of (22)

From (9), we obtain

(
∂2 ln fp(λ)
∂λ2

)2

=
(

2
p−1∑
j=1

g2
j − λ2(
g2
j + λ2

)2 − 2
p∑
j=1

c2
j − λ2(
c2
j + λ2

)2

)2

� (52)
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By a direct calculation, for any c�g ∈ C with positive real part∫ ∞

−∞

g2 − λ2(
g2 + λ2

)2

c2 − λ2(
c2 + λ2

)2 dλ= 2π
(c+ g)3 � (53)

Equation (22) now follows from expanding (52) and applying (53).

A.4. Computational Details

A.4.1. Limited-Information Marginal Likelihood Under Improper Prior for (μ�ω)

Let ω2ΣN be the N ×N covariance matrix of {JN(j/N)}Nj=1. Standard arguments show
that with an (improper) prior on (μ�ω) proportional to 1/ω, the marginal likelihood of
xT = (xT��T/N��xT��2T/N�� � � � � xT�T )′ under the approximation (12) of Corollary 1 is given by

C
(
ι′Σ−1

N ιdetΣN

)−1/2(
x′
TΣ

−1
N xT − x′

TΣ
−1
N ι

(
ι′Σ−1

N ι
)−1

ι′Σ−1
N xT

)−(N−1)/2
� (54)

where C does not depend on ΣN and ι is a N × 1 vector of ones.
Under approximation (16), the terms in this expression may be obtained from the

Kalman filter described in Section 4: As usual, x′
TΣ

−1
N xT is the sum of squared prediction

errors for the N non-missing observations x0
T0��jT0/N� = xT��jT/N�, j = 1� � � � �N , normalized

by their conditional variances, and detΣN is the product of these conditional variances.
Note that the conditional variances do not depend on the value of the observations. The
quadratic form ι′Σ−1

N ι is thus recognized as sum of squared prediction errors for N non-
missing “dummy observations” x0

T0��jT0/N� = 1, j = 1� � � � �N , and ι′Σ−1
N xT is the sum of

the product of these two prediction errors, both normalized by the conditional variances.
The terms required to evaluate (54) conditional on h may thus conveniently be obtained
from a single Kalman sweep with two states corresponding to the two sets of observations
x0
T0��jT0/N� = xT��jT/N� and x0

T0��jT0/N� = 1, j = 1� � � � �N .

A.4.2. Determination of πτ
Let πτ(τ) = τ2π̃τ(τ). The prior density of τ(h) implied by the prior πb(h)τ(h)21[3 ≤

τ(h)≤ 50] on h ∈ [0�Nπ]2p−1 is then inversely proportional to the desired additional com-
ponent π̃τ. We estimate π̃τ from 200,000 draws from the prior πb(h)τ(h)21[3 ≤ τ(h)≤ 50]
with a step function on [3�50] with 40 equal sized steps.

A.4.3. Posterior Simulation

We employ a random walk Metropolis–Hastings algorithm to obtain a Markov Chain
of draws from the posterior for h, and thus τ(h). The proposed moves are Gaussian with
identity covariance scaled to induce an acceptance rate of approximately 30%. To ensure
the numerical stability of the state space system (14)–(15), we avoid values of h that lead
to max1≤k�j≤p |(1 − cj/T0)(1 − ck/T0)|> 0�999. This is mostly binding for complex values
of cj , ck with very small real part and very large imaginary part.

Reported results are based on the combined output from 20 independent chains with
100,000 draws each. Total computing time for a given p is about one minute on a modern
workstation in a Fortran implementation.

The Bayes factors between model p and p−1 for p= 2� � � � �5 are estimated via Bridge
sampling as suggested by Meng and Wong (1996) using the posterior draws from each
model p, p= 1� � � � �5. These factors are then multiplied to obtain the Bayes factors rela-
tive to the LTU model with p= 1.
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A.5. Robustness of the Empirical Results in Section 5.2

In this section we investigate the sensitivity of the empirical results reported in the main
text to the smoothness parameter κ, and to alternative definitions of the half-life.

Recall that we set κ= 200 for the coefficient that penalizes large average values of the
squared second derivative of the log-spectrum. Here we consider κ= 500 (imposing more
smoothness) and κ= 0 (imposing no smoothness).

We also consider alternative measurements for the persistence of the real exchange
rates. The half-life measurement is a scalar summary of the persistence properties of
Jp, as embodied in the correlation function γp(r)/γp(0), r ≥ ∞, or, equivalently, in the
normalized spectrum fJp(λ)/ω

2, and as such is necessarily imperfect.
The first two alternative definitions are simple generalizations of the half-life measure

(20) as a fraction of the sample size to

inf
r

{
r :

∣∣∣∣b′eA|s|Σb
b′Σb

∣∣∣∣ ≤ η for all s ≥ r
}

for η = 1/2. In particular, we compute results for η = 1/4 and η = √
1/2, the “quarter-

life” and “
√

1/2-life” analogues of the definition in the main text. To make the results
directly comparable to those reported in the main text, we multiply these by 1/2 and 2,
respectively, so that in a LTU (p= 1) specification, these definitions all coincide, at least
as T → ∞. We numerically approximate these using the same device as in (21).

We also consider two alternative persistence measurements that are continuous func-
tions of the GLTU parameters. The first is based on d = a(0)/b(0)= ∏p

j=1 cj/
∏p−1

j=1 gj . As
discussed in the main text, d characterizes the limit of the sum of the AR(∞) coefficients.
From (9), d2 = ω2/(2πfJp(0)) = ω2/

∫ ∞
−∞ γp(r)dr, so d is also recognized as the square

root of the ratio of the innovation variance and the “long-run variance” of Jp. As a final
persistence measure we consider the ratio of the unconditional variance and the long-run
variance of Jp,

R= γp(0)∫ ∞

−∞
γp(r)dr

= d2b′Σb/ω2 ≈ d2b′Ω0
T0

b/
(
ω2T0

)
�

Note that for p= 1, b = 1 and Σ/ω2 = 1/(2c1), so R= c1/2, and recall that the half-life
for p= 1 as a fraction of the sample size is equal to (ln 2)/c1. To make these two additional
measures more directly comparable to the baseline half-life measure, we monotonically
transform them via

τd = ln 2
d
� τR = ln 2

2R
so that for p= 1, all four measures coincide.

For each of these six variations, we recompute the prior πτ so that the resulting prior
π(h) on the (transformed) alternative persistence measure yields a flat prior on [3�50] for
all p. Figure 4 plots the resulting posterior distribution, in analogy to the right hand side
of Figure 3, and Table III reports the Bayes factors relative to the p= 1 model. At least
qualitatively, there is only modest sensitivity to either the smoothness parameter κ or the
definition of the half-life in the sense that in all variations, models with p> 1 are strongly
preferred by the data, and they indicate the presence of substantially more persistence
compared to the p= 1 specification.



GENERALIZED LOCAL-TO-UNITY MODELS 1851

FIGURE 4.—Prior and Posterior Half-Lives as Function of p under Six Variants.

TABLE III

BAYES FACTORS RELATIVE TO p= 1 UNDER VARIANTS OF BASELINE PRIOR

p= 1 p= 2 p= 3 p= 4 p= 5

More smoothness, κ= 500 1.0 23.1 18.0 20.9 17.3
No smoothness, κ= 0 1.0 74.7 49.9 68.6 51.1
Half of quarter-life 1.0 69.6 45.1 56.8 40.3
Double of

√
1/2-life 1.0 13.8 10.7 13.2 10.9

Sum of AR(∞) 1.0 10.1 11.5 14.7 12.7
Variance ratio R 1.0 67.8 43.3 57.1 40.2
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A.6. Frequentist Test of H0 : p= 1

In the context of a GLTU(p) model, consider a frequentist test of H0 : p= p0 against
H1 : p= p1 >p0 based on the observation xT in the notation of Section A.4.1. Under the
approximation of Corollary 1, T−1/2(xT − μι)∼ N (0�ω2ΣN), where ΣN depends on the
GLTU parameters. The hypothesis testing problem thus amounts to inference about the
covariance matrix of a N × 1 normal vector.

Restrict attention to tests that are invariant to the transformations xT �→ sxT +mι for
s > 0 and m ∈ R. All invariant tests can be written as a function of the maximal invariant
(xT − ιι′xT /N)/‖xT − ιι′xT /N‖. By a standard calculation (cf. King (1980)), the density
of this maximal invariant is proportional to (54), which does not depend on ω2 or μ. The
invariant testing problem is thus characterized by 2p0 − 1 nuisance parameters under the
null hypothesis, and by 2p1 − 1 nuisance parameters under the alternative.

Given the non-standard nature of this testing problem, we employ the numerical algo-
rithm of Elliott, Müller, and Watson (2015) to obtain a nearly weighted average power
maximizing test. We set the weighting function equal to the prior distribution π under p1

from the main text, which we numerically approximate by computing averages over 500
independent draws from π. We exclusively consider the case p0 = 1, that is, a specifica-
tion test of the standard LTU model, so that there is a single scalar nuisance parameter
c > 0 under the null hypothesis (allowing for p0 > 1 results in a considerably harder com-
putational problem, especially for large N). We restrict the null parameter space for c to
equal (0�200], which rules out very strong mean reversion—c = 200 implies a half-life of
(ln 2)/200 = 0�35% of the sample.

We determine tests for N = 50 at the 1% and 5% level against p1 = 2 and p1 = 3, and
apply them to the real exchange rate data of Section 5.2. We find that both tests reject at
the 1% level, corroborating the Bayes factor results that also favor p> 1.
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