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We introduce a generalization of the popular local-to-unity model of time series per-
sistence by allowing for p autoregressive (AR) roots and p — 1 moving average (MA)
roots close to unity. This generalized local-to-unity model, GLTU( p), induces conver-
gence of the suitably scaled time series to a continuous time Gaussian ARMA(p, p—1)
process on the unit interval. Our main theoretical result establishes the richness of this
model class, in the sense that it can well approximate a large class of processes with sta-
tionary Gaussian limits that are not entirely distinct from the unit root benchmark. We
show that Campbell and Yogo’s (2006) popular inference method for predictive regres-
sions fails to control size in the GLTU(2) model with empirically plausible parameter
values, and we propose a limited-information Bayesian framework for inference in the
GLTU(p) model and apply it to quantify the uncertainty about the half-life of devia-
tions from purchasing power parity.

KEYWORDS: Continuous time ARMA process, convergence, approximability.

1. INTRODUCTION

THIS PAPER PROPOSES a flexible asymptotic framework for the modelling of persistent
time series. Our starting point is an empirical observation: For many macroeconomic time
series, such as the unemployment rate, interest rates, labor’s share of national income,
real exchange rates, price earnings ratios, etc., tests for an autoregressive unit root are
often inconclusive, or rejections are not exceedingly significant. As such, the unit root
model is a natural benchmark for empirically plausible persistence modelling. At the same
time, most economic models assume that these time series are stationary. What is more,
econometric techniques based on an assumption of an exact unit root can yield highly
misleading inference under moderate deviations of the unit root model, as demonstrated
by Elliott (1998).

These concerns have generated a large literature on econometric modelling and infer-
ence with the local-to-unity model." Specifically, a stationary local-to-unity (LTU) model
of the scalar time series x7, is of the form

(1_pTL)(xT,t_M’)=ut7 t=1:"'7T> (1)
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where L is the lag operator, py =1 — ¢/ T for some fixed ¢ > 0, and u, is a mean-zero 1(0)
disturbance satisfying a functional central limit theorem 7~/ Z[[':Tl] u;, = W) with Wa
Wiener process with variance equal to the long-run variance of u,. In this model,

T2 (xrrm —xr1) = Ji(-) =J1(0), 2)

where J; is a stationary Ornstein—Uhlenbeck process with parameter c, the continuous
time analogue of an AR(1) process. The process (1) is the local asymptotic alternative
of an autoregressive unit root (cf. Elliott, Rothenberg, and Stock (1996), Elliott (1999)).
As such, it is impossible to perfectly discriminate between a LTU process and a unit root
process, even as T — oo. Correspondingly, for any finite c, the measure of J;(-) — J;(0)
is mutually absolutely continuous with respect to the measure of W, the continuous time
analogue of a unit root process. LTU asymptotics thus properly reflect the empirical am-
bivalence of unit root tests noted above.

But the LTU model is clearly not the only persistence model with this feature, even with
attention restricted to stationary models. After all, the properties of the limiting process
J, are governed by a single parameter c, and the long-range dependence of J; are those of
a continuous time AR(1). For instance, in the LTU model, the correlation between xr 1
and x7 1 converges to e <!, It is not clear why this very particular form of long-range
dependence should adequately model the persistence properties of macroeconomic time
series.

This paper proposes a more flexible asymptotic framework by allowing for p autore-
gressive roots and p — 1 moving-average roots local-to-unity for p > 1, so that

(I—=praL)(A = proL)--- (1 — pT,pL)(xT,t —w)=0A—=yr L) (1— ’YT,pflL)uty
where pr;=1—¢;/T and yr,; =1—g;/ T for fixed {c;}?_, and {g;}"}" (with some condi-
tions on these parameters as specified in Section 2 below). With p = 1, this “generalized
local-to-unity” model GLTU( p) nests the familiar LTU model (1). A first result of this
paper is the convergence of the GLTU( p) model, that is, in analogy to (2),

Tﬁl/z(xr,(.n—xT,l) = J,()—=J,(0), (3)

where J, is a stationary continuous time Gaussian ARMA( p, p — 1) process with param-

eters {c¢;}7_, and {gj}f:f-

The GLTU( p) model sets the difference between the number of local-to-unity autore-
gressive and moving-average parameters to exactly one. This ensures that the limit process
J, still resembles a Wiener process: For instance, if instead (1 — p71L)(1 — proL) (x7,, —
w) = u,, the large sample properties of x7, would be more akin to an I(2) process, with
the suitably scaled limit of xr 71 — x7; converging to a limit process that is absolutely
continuous with respect to the measure of an integrated Wiener process [, W(r)dr. In
contrast, the measure of J,(-) — J,(0) is mutually absolutely continuous with respect to
the measure of W, so just as for the LTU model, the GLTU( p) model cannot be perfectly
discriminated from the unit root model, even asymptotically.

While clearly more general than the standard local-to-unity model (1), one might still
worry about the appropriateness of the GLTU(p) model for generic persistence mod-
elling of macroeconomic time series. Our main theoretical result addresses this concern
by establishing the richness of the GLTU( p) model class. Recall that the total variation
distance between two probability measures is the difference in the probability they assign
to an event, maximized over all events. We show in Section 3 below that for any given
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stationary Gaussian limiting process G whose measure of G(-) — G(0) is mutually abso-
lutely continuous with respect to the measure of W, and a mild regularity constraint on
the spectral density of G, for any ¢ > 0 there exists a finite p, and GLTU( p,) model such
that the measure of the induced limiting process J,, is within & of the measure of G in
total variation norm. In other words, for small &, the stochastic properties of J,_ and G
are nearly identical. Thus, positing a GLTU model is nearly without loss of generahty for
the large sample modelling of persistent stationary processes that cannot be distinguished
from a unit root process with certainty in large samples.

In practice, applications of the GLTU model involve the choice of a finite p and the de—
termination of the corresponding 2p — 1 GLTU( p) model parameters {c;}_, and {g;}7_,
This is perfectly analogous to the modelling of generic covariance statlonary processes
as finite order AR, MA, or ARMA process. The implementation is relatively harder for
the GLTU mode, however: As noted above, since the LTU model cannot be perfectly
discriminated from the unit root model, the parameter ¢ in (1) cannot be consistently es—
timated. By the same logic, neither the value of p, nor the parameters {c;}7_, and {g;}_,
for a given p can be consistently estimated. This impossibility is simply the ﬂ1p side of the
arguably attractive property of GLTU asymptotics to appropriately capture the empirical
ambivalence of unit root tests.

With that in mind, we suggest a limited-information framework for likelihood based
inference with the GLTU( p) model. Note that (3) implies, for any fixed integer N

(T — 20}, = (G0N =101, 4)

Thus, with attention restricted to the N observations on the left-hand side of (4), large-
sample inference about the GLTU parameters is equivalent to inference given N dis-
cretely sampled observations from a continuous time Gaussian ARMA(p, p —1) process.
But this latter problem is well studied (cf. Phillips (1959), Jones (1981), Bergstrom (1985),
Jones and Ackerson (1990), for example), and we show how to obtain a numerically ac-
curate approximation to the likelihood by a straightforward Kalman filter.

We use this framework for two conceptually distinct empirical exercises. First, we show
that inference methods derived to be valid in the LTU model can be highly misleading
under an empirically plausible GLTU(2) model. In particular, we consider Campbell and
Yogo’s (2006) popular test for stock return predictability. By construction, this test con-
trols size in the LTU model. But we find that in the GLTU(2) model, it exhibits severe size
distortions, even if the GLTU(2) parameters are restricted to be within a two log-points
neighborhood of the peak of the limited-information likelihood for the price—dividend
ratio. In other words, unless one has good reasons to impose that the long-range persis-
tence patterns of potential stock price predictors are of the AR(1) type, the Campbell
and Yogo (2006) test is not a reliable test of the absence of predictability. This points to
Wright’s (2000b) test as an attractive alternative that remains robust irrespective of the
persistence properties of the predictor.

Second, and more constructively, we conduct limited-information Bayesian inference
about the half-life of the United States/United Kingdom (US/UK) real exchange rate
deviations, using the long-span data from Lothian and Taylor (1996). We suggest forming
a prior on the GLTU parameters in terms of the smoothness of the implied continuous
time ARMA spectral density. The functional form of this spectral density allows for a
very compact and easy-to-evaluate expression for one such measure. Substantively, we
find that the GLTU model with p > 2 is strongly preferred by the data as indicated by
the corresponding Bayes factors, while at the same time leading to much larger posterior
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half-life estimates. This illustrates that allowing for the generality provided by the GLTU
model can substantially alter conclusions about economic quantities of interest.

The computational convenience of the limited-information likelihood also potentially
enables the numerical determination of asymptotically valid frequentist inference in the
GLTU(p) model, at least for a given moderately large value of p. In the Appendix, we
determine location and scale invariant tests of Hy: p = 1 against H; : p > 1 using the
algorithm of Elliott, Miiller, and Watson (2015) to deal with the composite nature of
the hypotheses. We find that applied to the US/UK real exchange rate data, these tests
reject at the 1% level, corroborating the Bayesian finding that the LTU model is unable
to adequately capture the low-frequency properties of these series.

This paper contributes to a large literature on alternative models of persistence, such
as the fractional model (see Robinson (2003) for an overview), the stochastic local-to-
unity model of Lieberman and Phillips (2014, 2017) or the three parameter model of
Miiller and Watson (2016). These models are generalizations of the unit root model that
for almost all parameter values can be perfectly discriminated from this benchmark, at
least in large samples, so they do not fall into the class of models this paper focusses on.
The scalar GLTU model is closely connected to the VAR (1) LTU model considered by
Phillips (1988, 1998), Stock and Watson (1996) or Stock (1996): The marginal process for
a scalar time series of a VAR(1) LTU model is in the GLTU class, since sums of finite
order AR processes are finite order ARMA processes, and as we demonstrate below, the
GLTU model can be represented as a weighted average of a latent p-dimensional LTU
VAR(1).

Our main theoretical result on the approximability of continuous time Gaussian pro-
cesses is related in spirit to the approximability of the second order properties of dis-
crete time stationary processes by the finite order ARMA class—see, for instance, Theo-
rem 4.4.3 of Brockwell and Davis (1991) for a textbook exposition. The continuous time
case is subtly different, though, since spectral densities are then functions on the entire
real line (and not confined to the interval [—r, 7r]). What is more, we obtain approxima-
bility in total variation distance, and not just for a metric on second order properties. We
are not aware of any closely related results in the literature.

The remainder of the paper is organized as follows. Section 2 introduces the GLTU( p)
model in detail and formally establishes its limiting properties. Section 3 studies the rich-
ness of the GLTU(p) model class and contains the main theoretical result. Section 4
develops a straightforward Kalman filter to evaluate the limited-information likelihood.
Section 5 contains the two empirical illustrations, and is followed by a concluding Sec-
tion 6. Proofs are collected in the Appendix.

2. THE GLTU(p) MODEL
2.1. Definition
We make the following assumptions about the building blocks of the GLTU( p) model

(= priL)A = proL) -+ (1= pr,L)(xr, — p) = (1 = yrL) - (1 = yrp L)y, (5)
where pr;j=1—¢;/T and yr;=1-g;/T.

CONDITION 1: (i) The innovations {u,}>°___ are mean-zero covariance stationary with ab-
=0 ry

solutely summable autocovariances and satisfy T~/ Z,LTQ u, = W), where W(-) is
a Wiener process of variance w*.
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(ii) The parameters {c,-};’:1 and { gj}jp;ll do not depend on T and have positive real parts.
They can be complex valued, but if they are, then they appear in conjugate pairs, so that
the polynomials a(z) =[]7_ (¢;+2z) =2/ + ) I a;z" and b(z) = f:ll(gj +2)=
201+ Y 170 b;27 have real coefficients.

(iii) For all T, the process {x1,}°__ is covariance stationary.

The high-level Condition 1(i) allows for flexible weak dependence in the innovations
u,. Part (ii) ensures that a covariance stationary distribution of x7, exists, and that the
limiting continuous time Gaussian ARMA process J), is causal and invertible. Part (iii)
implicitly restricts the initial condition (xr,, ..., X7,—,+1) to also be drawn from this co-
variance stationarity model.

2.2. Continuous Time Gaussian ARMA Processes
Let J, be a mean-zero stationary continuous time Gaussian ARMA(p, p — 1) process
with parameters {c;}7_;, {g j}p71 and ? of Condition 1(ii), denoted CARMA(p, p — 1)

j=1
process in the following. As discussed in Brockwell (2001), J, can be written as a scalar
observation
J,(s) =b'X(s) (6)
of the p x 1 state process X with
X(s) = eX(0) + / A e dW (r), (7)

0

where X(0) ~ N(0, ) is independent of the scalar Wiener process W of variance w?,

0 1 0 e 0 0 by
0 0 1 e 0 0 b,
A= N s H RS
0 0 0 1 0 b,
—a, —a,q —a,, --- —a 1 1

and the coefficients a; and b; are defined in Condition 1(ii). The covariance matrix of
X(0), and hence X(s), is given by
0 ’
3 =E[X(0)X(0)] = wZ/ e Mee'e A" dr, (8)
the autocovariance function of J, is y,(r) = E[J,(s)J,(s + r)] =b'e*" 3b, and, with i =
v/ —1, the spectral density f, : R — R of J, satisfies

—_

hS]

(A" +)
2 f
fi,(A) = i/oo ey (Fydr = w? [b(iM)| _ 20
Ip 27T —0 P 27T |a(l/\)’2 2

e

)

3

1~

(A +c)
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Theorem II1.17 of Ibragimov and Rozanov (1978) implies that the measure of J, is
mutually absolutely continuous with the measure of J; for any fixed ¢ = ¢; > 0. Since the
measure of J;(-) — J(0) is mutually absolutely continuous with the measure of W, so the
same holds true for J,(-) — J,(0).

2.3. Limit Theory

The usual state space representation of the discrete time ARMA process (5) in the def-
inition of the GLTU(p) model is not obviously related to the state space representation
(6) and (7) of the CARMA(p, p — 1) process. But it turns out that one can rewrite the
former in the form

X7, =M+ b,ZT,t, (10)
ZT,t =1 +A/ T)ZT,1—1 +eu,, (11)

where Zr, € R?, mimicking (6) and (7). This is the key step in the proof of the following
theorem, which establishes the large sample relationship between the GLTU(p) model
and the corresponding CARMA(p, p — 1) model J,,.

THEOREM 1: Under Condition 1, the GLTU(p) model satisfies T-"*(x7;r — p) =
J,().

Equations (10) and (11) demonstrate that the GLTU model for x7, amounts to a linear
combination of the LTU VAR(1) process Zr, with matrix LTU parameter A. As noted in
the introduction, the LTU VAR(1) model has been considered in the literature to jointly
model several persistent time series. It follows from standard results (see, for instance,
Corollary 11.1.1 of Liitkepohl (2005)) that linear combinations of a p dimensional LTU
VAR(1) are in the GLTU(p) class, for any (stationary) choice of the matrix LTU pa-
rameter. For instance, sums of p independent scalar LTU processes form a particular
GLTU(p) model.

We are not aware of previous work that models a scalar series xr, as a linear combi-
nation of a latent LTU VAR(1) process to induce more flexible long-run dynamics. Note
that if this is the objective, then leaving the LTU matrix parameter and the innovation
covariance matrix of the latent VAR process unrestricted leads to a severely redundant
parameterization. In the nonredundant parameterization of (10) and (11), the LTU ma-
trix parameter A in (11) has only p free parameters, and the covariance matrix of the
innovation eu, has only one free parameter.

3. RICHNESS OF THE GLTU(p) MODEL CLASS

In this section we explore the range of large sample persistence patterns that GLTU( p)
models can induce. Consider a process xr,, not necessarily a GLTU process, that satisfies
T-"*(x7,;m — 1) = G(-) for some mean-zero stochastic process G on the unit interval.
How well can a GLTU( p) model approximate the large sample long-range dynamics of
Xr,, as characterized by the properties of G?

By Theorem 1, this amounts to studying how well the class of CARMA(p, p — 1) pro-
cesses J, can approximate the process G. As discussed in the introduction, we focus on
processes xr,, that are stationary and that cannot be distinguished from a unit root model
with certainty, even asymptotically. Since the limiting process of the unit root model is
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the Wiener process W, the latter condition amounts to requiring that the measure of
G(-) — G(0) is absolutely continuous with respect to the measure of W.

The following theorem shows that the GLTU class can closely approximate all such
processes, at least under an additional technical assumption.

THEOREM 2: Let G be a mean-zero continuous time stationary Gaussian process on the
unit interval satisfying
(i) the measure of G(-) — G(0) is absolutely continuous with respect to the measure of W
(ii) G has a spectral density fc : R — [0, 00) satisfying sup,(1 + A?)fs(A) < oo and
inf, (1 4+ A?)fs(A) > 0.
Then for any € > 0, there exists a CARMA(p,, p. — 1) process J,, such that the total
variation distance between the measures of G and J ,, is smaller than .

The conclusion of Theorem 2 is that the entirety of the stochastic properties of G can
be well approximated by the stochastic properties for some GLTU( p) limiting process J,,
for a large enough but finite p. In addition to condition (i), which formalizes the assump-
tion of the unit root model as a reasonable statistical benchmark, we require the technical
condition (ii) on the spectral density of G. To shed further light on its nature, note that
the spectral density of an Ornstein—Uhlenbeck process J; with mean reverting parameter
c=1lisgiven by f;,(A) = 2m) ' »?/(A* + 1), so that lim,_. (1 + A*) f;, (A) = 0?/(27). In
fact, it follows from (9) that lim,_...(1+ A*)f;,(A) = w?/(27) for any CARMA(p, p — 1)
process. Condition (ii) of Theorem 2 only requires that (1 + A?)f;(A) is bounded away
from zero and infinity uniformly in A, but not that it converges as A — oo (so Theorem 2
covers cases where sup, (1+A?)|fo(A) — fjpg (A)] is large, even for small ¢). It also immedi-
ately follows from Theorem II1.17 of Ibragimov and Rozanov (1978) that if (1 + A7) f5(A)
is bounded away from zero and infinity uniformly in A for some g > 1, then for any g # 2,
the measure of G is orthogonal to the measure of J;, and hence the first assumption in
Theorem 2 is violated. Thus, given assumption (i), assumption (ii) is arguably fairly mild.

The proof of Theorem 2 is involved. We leverage classic results on the mutual absolute
continuity (but not approximability) of Gaussian measures by Ibragimov and Rozanov
(1978) to obtain a bound on the entropy norm between the measures of a countable set of
characterizing random variables {¢;(G)}32, and those of potential approximating process
in terms of their spectral densities, and then apply a locally compact version of the Stone—
Weierstrass theorem to uniformly approximate f; by some f;, . See the Appendix for
details.

4. A LIMITED-INFORMATION LIKELTHOOD FRAMEWORK

In this section we suggest a framework for conducting large sample inference with
the GLTU model. A natural place to start would be the likelihood of J,. Pham-Dinh
(1977) derives the likelihood but notes that it is “too complicated for practical use”
(p- 390). What is more, it wouldn’t be appropriate to treat 7-"*(x7 .7y — p) as a real-
ization of J,(-) directly, since Theorem 1 only establishes weak convergence. To make
further progress, we restrict attention to inference that is a function only of the N ran-
dom variables {x7 ;7w }f’: 1» for some given finite integer N.

4.1. Large Sample Approximation

The following result is immediate from Theorem 1 and the continuous mapping theo-
rem.
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COROLLARY 1: Under Condition 1, for any fixed integer N > 1,
—-1/2 N . N
{T (x1,r7/M1 —M)}j:l = {Jp(]/N)}j:1~ (12)

An asymptotically justified limited-information likelihood of the GLTU(p) model is
thus given by the likelihood of a discretely sampled CARMA(p, p — 1) process. The
number N determines the resolution of the limited-information “lens” through which
we view the original data {xr,}"_,. The convergence in Theorem 1, and thus in (12), are
approximations that show that under a wide range of weak dependence of u,, central limit
theorem type effects yield large sample Gaussianity and a dependence structure that is
completely dominated by the long-run dependence properties of the GLTU(p) model.
In finite samples, a large N takes these approximations seriously even on a relatively
fine grid, so in general, a large N reduces the robustness of the resulting inference. At
the same time, a small N leads to a fairly uninformative limited-information likelihood.?
The choice of N thus amounts to a classic efficiency versus robustness trade-off. In our
applications, we set N = 50.

4.2. Numerical Approximation to Limited-Information Likelihood

As noted in the introduction, there are a number of suggestions in the literature on how
to obtain the likelihood of a discretely sampled CARMA( p, p—1) process. One potential
difficulty is the computation of covariance matrices involving matrix exponentials (cf. (8)).
If the local-to-unity AR roots are distinct, then the companion matrix A is diagonalizable,
so one can rotate the system by the matrix of eigenvectors to avoid this difficulty. But
in general, this yields a complex valued system, which requires additional care. What is
more, one might not want to rule out a pair of identical local-to-unity AR roots a priori.

We now develop an alternative approach for the computation of the likelihood of
{J,(j/N )}f’: , that avoids these difficulties. To this end, consider the discrete time Gaussian
ARMA(p, p—1) process

1- pTO,lL) (1= PTO,pL)(x(}O,, - ,lL) =(1- )’To,lL) (1= ’YTO,p—lL)u? (13)

fort=1,..., Ty, where T, is large, u? ~ iid N (0, ?), and py, ; and vz, ; are defined below
(5)- Asin (10) and (11), x7, , has the state space representation

x5, =bZy +u, (14)
Z5 =0, +A/T)ZY | +eu, (15)
with Q7 = E[Z}, ,(Z), ,)'] satisfying vec 2}, = 0*(12 — (I, + A/ Ty) ® A, + A/ Ty)) ! x

vec(ee').
With T = T, and u, = u?, the model (13) clearly satisfies Condition 1, so by Corollary 1,

{To_l/z(x%,wo/m — ) }7:1 = {Jp(j/N)}j‘V:I (16)

>The number of observations N thus plays a similar role to the number of cosine regression coefficients g
in the low-frequency extraction approach of Miiller and Watson (2017); in combination with the Kalman filter
described below, the approach based on (12) is computationally much more advantageous, however.
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as T, — oo. Furthermore, since {x7, t}T“l is a Gaussian process, this further implies
convergence of the corresponding first two moments. Thus, the Gaussian likelihood of
{T, Y z(xTO’”TO N — )} =1 approximates the likelihood of {J,(j/N )}j": , arbitrarily well as
Ty — oo. An accurate Euler-type approximation to the asymptotically justified limited-
information likelihood for the 2p 4 1 parameters u, o, {c¢;};_, and {g]-}]’.’:_l1 of the
GLTU(p) model can therefore be obtained from a straightforward application of the
Kalman filter with state (15) and observations x§, ;. v = X7.rjr/n1, j = 1, ..., N, with all
other observations of xj, , treated as missing. In our applications, we found that setting
Ty, = 1000 leads to results that remain numerically stable also for larger values of 7.

4.3. Parameterization of GLTU Parameters

A remaining difficulty is the restriction on the parameters {c;};_, and {g,}f;f of Con-
dition 1(ii). Here we follow Jones (1981), who noted that under Condition 1(ii), one
can rewrite a(z) and b(z) as a product of quadratic factors (and a linear factor if
p is odd), where each quadratic factor collapses a potentially conjugate pair of roots
into a quadratic polynomial with positive coefficients. For instance, if ¢; = ¢} + ¢{i and
¢ =cf —cliwith ¢ >0 and ¢! € R, then (z 4+ ¢|)(z + ;) = (c¢})? + (¢))* + 2¢}z + 22,
and if ¢; and ¢, are real and positive, (z + ¢|)(z + &) = ¢1¢; + (¢ + &)z + z%. Either
way, the resulting quadratic polynomial is of the form h? + 2h,z + 2%, with hy, h, > 0,
and in this parameterization ¢, , = h, £+ \/h5 — h?. The same argument applies to the
MA polynomial. Thus, we can parameterize {c,«}f:1 and {g,-}]’.’:]1 in terms of the vector
h=(h{,.... K, K, ..., hiq)/ € [0, c0)?~!, where for p odd, ¢, = k¢, and for p even,
8p-1= hfaq

Note that the function A* — (A? + ¢})(A? + ¢3) potentially has a local minimum at A =
V—(+2)/2 = \/h? —2h3 < h,. At the same time, the Nyquist frequency of N discrete
limited-information observations is N . Thus restricting each value of 4 to the interval
[0, N ] still provides full flexibility of the rational spectral density function (9) over the
relevant frequency band, and we will impose this restriction in the following.

5. APPLICATIONS

This section describes two applications of the GLTU(p) model and the limited-
information framework of the last section. The first application considers the popular
Campbell and Yogo (2006) hypothesis test of no predictability in the presence of a per-
sistent predictor. This test is derived under the assumption that the persistence is of the
LTU form, and we consider its size when in fact the persistence is generated by a GLTU(2)
model. We find that empirically plausible values of the GLTU(2) parameters for the U.S.
price—dividend log ratio from 1926:12-2018:5 induce large size distortions.

Our second application concerns the quantification of mean reversion in real exchange
rates predicted by the theory of purchasing power parity, applied to the long-span data
assembled by Lothian and Taylor (1996). We conduct Bayesian inference about the degree
of mean reversion in the GLTU( p) model for p =1, 2,...,5. We find that the results for
p > 1 are quite different from those for the p =1 LTU model, and that the LTU model
provides a substantially worse fit.

Both applications thus show that the standard approach of modelling persistent time
series with the LTU model yields potentially misleading empirical conclusions, suggesting
a need for the greater flexibility provided by the GLTU(p) model.
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5.1. Predictive Regression With a Persistent Predictor

Let yr, denote the excess stock return in period ¢, and let xr,_; denote a persistent
potential predictor variable observed at ¢ — 1, such as the price—dividend log ratio. A stan-
dard LTU formulation of this setup is

Yro =My + IBXT,Z—l + e, (17)
(1= prL)(x7, — p) = u, (18)

where pr =1 — ¢/ T for fixed ¢ > 0, and the mean-zero disturbances (e,, u,) are weakly
dependent with correlation r,,. The null hypothesis of no predictability amounts to Hj :
B =0, against the alternative that H; : 8 # 0.

As is well understood, the OLS estimator of 8 in this setup is biased under r,, # 0,
invalidating standard inference based on the ¢-statistic on 8 in (17). While the bias is a
function of ¢, and hence not consistently estimable, several approaches have been devised
to obtain valid inference: see, for instance, Elliott and Stock (1994), Cavanagh, Elliott,
and Stock (1995), Campbell and Yogo (2006), Jansson and Moreira (2006), and Elliott,
Miiller, and Watson (2015). These tests have local asymptotic power against alternatives
of the form B8 =b/T, b # 0, but their construction is predicated on the LTU form (18)
of predictor persistence. Magdalinos and Phillips (2009) and Kostakis, Magdalinos, and
Stamatogiannis (2015) devise an approach that focusses on higher frequency variability
of the predictor, which recovers standard normal null distributions for test statistics. This
presumably provides robustness also under alternative forms of predictor persistence, al-
though at the cost of no asymptotic local power in the 8 = b/ T neighborhood of the null
hypothesis.® Finally, Wright (2000b) suggested an ingenious approach that does not re-
quire any assumptions about the properties of xr, for its validity (also see Lanne (2002)):
Under the null hypothesis of H,: 8 =0 in (17), yr, recovers the true prediction errors
e, up to a constant, so a test of stationarity of yr, does not overreject irrespective of the
properties of the predictor xr,. Furthermore, adapting the arguments leading to Theo-
rem 4 of Wright (2000b) shows that such a test has nontrivial asymptotic power under
local alternatives with 8 = By + b/ T and x, satisfying T-"*(x7 ;.71 — ) = G(-) as long
as G is an almost sure nonzero continuous function.

The most popular approach in practice is the Campbell and Yogo (2006) test, which
corrects for the bias by forming a confidence interval for ¢, and a Bonferroni-type cor-
rection to the critical value. This construction crucially exploits the LTU model (18) for
the predictor.* At the same time, it is not obvious whether empirically plausible alterna-
tive forms of persistence can induce (large) size distortions. Specifically, in contrast to
Campbell and Yogo’s assumption, suppose xr, follows a GLTU(2) model

(A= pr LYA = proL)(x7, — ) =1 —yr 1 L)u,. (19)

Does the 10% level Campbell and Yogo (2006) test continue to reject a true null hypothe-
sis of no predictability Hy : 8 = 0 at most 10% of the time under such an alternative form
of persistence?

3Similarly, Kasparis, Andreou, and Phillips (2015) develop a robust approach to nonparametric predictive
regressions with potentially persistent regressors with local asymptotic power against larger alternatives.

“Technically, Campbell and Yogo (2006) assume a nonstationary LTU model with zero initial condition. We
therefore impose a zero initial condition in the empirical analysis both for the LTU and the GLTU(2) model.
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Price-Dividend Log-Ratio Log-Spectra of CARMA Models
-10¢

-12

, MLE
xample 1

=3
I
-

NN

==

, Example 3
Example 4

VST

- 141

-16} R — g

1 1 1 1 Year 1 1 1 1 A
1940 1960 1980 2000 0 50 100 150 200

FIGURE 1.—CRSP price—dividend ratio and empirically plausible limiting log spectra.

We investigate this issue in the context of the empirical example in Campbell and
Yogo (2006), where yr, is the monthly excess return on the NYSE/AMSE value-weighted
monthly index, and x7, is the corresponding price—dividend log ratio, averaged over the
preceding 12 months. We updated the Campbell and Yogo (2006) data set to 1098 monthly
observations from 1926:12-2018:5 from the database of the Center for Research in Secu-
rity Prices (CRSP). The left panel in Figure 1 plots xr,.

To obtain empirically plausible parameters of the GLTU(2) model, we first maximize
the limited-information likelihood with N = 50 as described in Section 4 in the LTU
model, yielding the MLE for ¢ equal to 23.1. Call values of {¢;, c;, g1} “empirically plau-
sible” for the GLTU(2) model (19) if the profiled value over u and ? of the limited-
information likelihood is within two log-points of the LTU maximum likelihood. This def-
inition ensures that a GLTU(2) model with empirically plausible parameter values cannot
be distinguished from the baseline LTU model with much confidence.

We then compute the rejection probability of Campbell and Yogo’s (2006) nominal
10% level two-sided test of no predictability for data generated from such empirically
plausible GLTU(2) processes with 7= 1098, B8 =0, (e,, u;)’ i.i.d. mean-zero normal and
correlation equal to r,, = —0.951, which is the value of r,, estimated by Campbell and
Yogo’s procedure under the LTU model assumption. (The test is invariant to translation
shifts and scale transformations of y;, and xr,, so the variances of e, and u,, as well as the
means u and w, are immaterial.) In Table I we report the parameter values for four fairly

TABLE I

FOUR GLTU(2) PARAMETERS AND RESULTING NULL REJECTION PROBABILITY OF THE 10% LEVEL
CAMPBELL-YOGO (2006) TEST

Example Number

1 2 3 4 LTU-MLE
Value of ¢; 5.0 0.7 1.3 17.2 23.1
Value of ¢, 230.1 308.1 191.6 264.1 NA
Value of g 22.8 17.2 15.5 52.7 NA

Null rejection probability 48.7% 73.7% 46.4% 49.3% 5.8%
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distinct empirically plausible GLTU(2) parameters that induce severe size distortions.’
The right panel in Figure 1 plots the corresponding log spectral densities of the limiting
CARMA(2, 1) model, along with the limiting Ornstein—Uhlenbeck process with ¢ = 23.1,
that is at the limited-information MLE.

We conclude from this exercise that the validity of the Campbell and Yogo (2006) test
very much depends on the untestable assumption that the predictor persistence is of the
LTU form. Since this is arguably an unattractive assumption, a more compelling test of no
predictability is Wright’s (2000b) approach, which is asymptotically valid with nontrivial
power in the B8 = b/ T neighborhood for the entire GLTU class.

5.2. Persistence of Deviations From Purchasing Power Parity

Lothian and Taylor (1996) assembled long-term data on the log US/UK real exchange
rate from 1791 to 1990 and estimated half-life deviations of approximately 6 years based
on an AR(1) specification. We consider the same data extended through 2016, xr,, and
plotted in the left panel of Figure 2.° We are interested in quantifying for how long devi-
ations from purchasing power parity persist assuming that the exchange rate x;, follows
a GLTU(p) model.

The traditional definition of the half-life is based on the impulse response of the Wold
innovation to x7,, which in general depends not only on the GLTU( p) parameters {c;}
and {g;}, but also on the short-run dynamics of u,. See, for instance, Andrews and Chen
(1994), Murray and Papell (2002) or Rossi (2005). At the same time, as discussed in Tay-
lor’s (2003) survey, the literature on real exchange rates emphasizes mean reversion in the
long run, and often applies corresponding augmented Dickey—Fuller regressions, which in
the context of the LTU model amount to inference about ¢ (also see Murray and Papell
(2005) and Stock (1991)).

Impulse responses are most meaningful in the context of a structural model, where
innovations are given an explicit interpretation. But the structural interpretation of Wold
innovations to the real exchange rates is not obvious. We therefore define the half-life

) . ) Prior and Posterior
Log of US/UK Real Exchange Rate Distribution of Half-Life

04 0.20

Prior, all p
Posterior p=1
tor p=?

015+

= - Posterior p=4

D10¢ - Posterior p=5

0.05F

1800 1850 1900 1950 2000 10 20 30 40

Years

0.00

o

FIGURE 2.—Bayesian limited-information analysis of US/UK real exchange rates.

>This adds to the analysis by Phillips (2014) and Kostakis, Magdalinos, and Stamatogiannis (2015), who
document size distortions of the Campbell and Yogo (2006) test with an AR(1) predictor that exhibits less
than LTU persistence.

%The extension is based on the FRED series DEXUSUK, SWPPPI and WPSFD49207 for recent values of
the exchange rate, and UK and US producer price indices.
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in terms of the following thought experiment: Given the model parameters, suppose we
learn that the value of the stationary process xr, at the time ¢ = 0 is one unconditional
standard deviation above its mean, but we don’t observe any other values of x,. What is
the smallest horizon 7 such that the best linear predictor of x;, given xr is within 1/2
unconditional standard deviations of its mean, for all ¢ > 7?

The best linear predictor of x7, given xr is proportional to the correlatio