Supplementary Appendix to “An Improved Inference for

IV Regressions”*

Liyu Dou?, Pengjin Min®, Wenjie Wang”, and Yichong Zhang®

8LSz’ngo&pore Management University, Singapore

b Nanyang Technological University, Singapore

February 6, 2026

A Combination Test with Weak Low-Dimensional IVs

In this section, we study the property of our combination test when Assumption 2 is violated.
Specifically, we assume that the identification strength provided by the low-dimensional IVs
is weak, rendering the Wald test invalid. On the other hand, we assume that the identification
strength provided by the many IVs is strong. To characterize the limiting behavior of the

low-dimensional IVs under weak identification, we introduce the following assumptions.

Assumption 2'. Let Assumption 2.1 hold. In addition, the following conditions hold almost

surely:

1. Forr, = HZTH

27 Tn/\/> = O(l);

*We are grateful to Michal Kolésar for helpful comments. Any and all errors are our own.




2. It holds that

in the matrix sense for all n large enough.

Remark A.1. Compared to Assumption 2, the main difference here is that we have r,,/y/n =
O(1). This corresponds to weak identification of the parameter of interest 5 under the low-
dimensional I'Vs, since in this case the deterministic part and the random part of 2" X are of
the same order. This setting is similar to the weak-IV asymptotics considered in Staiger and
Stock (1997), where z' X /y/n converges to a random limit instead of diverging to infinity
(the latter would happen under a standard asymptotics where z' X /n is assumed to converge

to a non-zero fixed limit).

In the following, we first present the results for the case with d, = 1. Note that it
is the most important case for empirical applications of IV regressions. For instance, 101
out of 230 specifications in Andrews, Stock, and Sun (2019)’s sample and 1,087 out of
1,359 in Young (2022)’s sample feature one endogenous regressor and one IV. Similarly, Lee,
McCrary, Moreira, and Porter (2022) find that 61 out of 123 IV papers published in AER
between 2013 and 2019 use one endogenous regressor and one IV. For these applications,
empirical researchers can generate many IVs by using polynomials or interactions based
on their one-dimensional base IV and control variables. Then, it is possible to achieve
efficiency improvement using our combination procedure. Furthermore, d, is also equal to
one in the widely used shift-share IV regressions. It turns out that in this case, the local
asymptotic power function of our combination test is equal to that of the asymptotically
optimal test based on z"e(By)/vVQ, LM (fy), and AR, where the first statistic corresponds

to the conventional cluster-robust AR test using z as instruments.



Theorem A.1. Suppose that d, = 1. Assume that the following limit exist (almost surely):
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and p? + p} < 1. Under Assumptions 1, 2 and 3, and assume that II'TI/v/K — o, then we

have:

1. Suppose that there exists a deterministic sequence d,, | 0 such that
d,®,"* > a>0, and B—By=ddy,

for some fixed 9, then

2
: P1 1 P2
lim E[gb:] =P - N+ — NQ_—_./\/E; > C,
( 1—pt —p5 1—pt—p3 1—pt—p3

Nl 0 1 ﬁl 0
where | N, LN ad || pr 1 p2
N3 0 0 p2 1

2. Suppose that  — By = & for some fized 6 # 0, then lim,,_,, E [¢*] = 1.

Theorem A.1 implies that, in the scalar case (d, = 1), our approach is equivalent to an op-
timal combination of the low-dimensional AR, Jackknife LM, and Jackknife AR. A key scalar-
specific feature is that the discrepancy between the low-dimensional AR and low-dimensional
Wald (i.e., T'(Bp)) effectively reduces to a random sign that cannot be consistently estimated

when the IV z is weak; correspondingly, p; is inconsistent, and the low-dimensional Wald



is non-normal. However, by appropriately choosing combination weights, this unidentifiable
sign component cancels out, preserving the validity of our combination test in the important
scalar setting.

When d, > 1, it is no longer possible to cancel the random sign. Nevertheless, if the cor-
relation between T'(fy) and LM (fy) is asymptotically negligible, our combined test remains

unaffected by T'(fy), as shown in the next result.

Theorem A.2. Assume that the following limit exists (almost surely)

: 2 o T =\ (aT >
p=lim = ), E | (VinPlaon) (@ Planem) ).

9,he[G]?,g#h

with p? < 1. Under Assumptions 1, 2 and 3, and assume that II'I1/\/K — . If further

assume II'TI/K — 0, then we have:

1. Suppose there exists a deterministic sequence d,, | 0 such that
d,®,"* > a>0, and B—By=ddy,

for some fixed 9, then

2
: 1 p a?
im E[¢f] =P [ | —=N, — ——=N, | =C, |=P(x] (¥ )Z(Ca),
s [#n] («/1—,02 ' V1—=p? 2) <X1( 1—p?

N, ad 1
where H 4 N , g

NQ 0 ,01

2. Suppose that 5 — By = & for some fized 6 # 0, then lim,,_,, E [¢*] = 1.

Under the local alternative 8 — By = dd,,, lim,,_,, E [¢*] coincides exactly with the local
asymptotic power function of the asymptotically optimal test based on LM(fy) and AR

in Lim, Wang, and Zhang (2024). The assumption that II'II/K — 0 is similar to the
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assumption in Mikusheva and Sun (2022, Theorem 4). As pointed out by Mikusheva and
Sun (2022), this condition is quite weak as it still covers both weakly and strongly identified
cases (with many IVs). In addition, we notice that under fixed alternatives, the combination
test remains consistent even when the identification strength of the low-dimensional IVs is
weak.

Note also that it is possible to combine the low-dimensional AR, Jackknife LM, and
Jackknife AR directly, provided that the many IVs are strong. In this way, the combination
test is robust against weak low-dimensional [Vs when d, > 1 without further assumptions. In
this paper, however, we emphasize Wald-based inference for the low-dimensional IV setting
because it is the workhorse in empirical applications and, when low-dimensional IVs is strong,
Wald is more powerful than AR in the overidentified case.

Finally, if both low-dimensional IVs and many [Vs are weak, then by using null-imposed
variance estimators, the combination test that combines the low-dimensional AR, Jackknife
LM, and Jackknife AR is robust to arbitrary weak identification, regardless of d, provided
that it is bounded. It is also possible to consider a broader combination that includes
weak-identification-robust AR and LM (along with Jackknife LM and Jackknife AR). This

is beyond the scope of the current paper.

B Technical Lemmas

We use the following notation throughout Sections B-D. Recall the definition of Y, X, Z,
Z, W, II, V and é. Denote Py as the projection matrix of W, My, = I, — Py, and let
Y = MyY, X = MwX, Z = MwZ, = = Mwz, I = MyII, V = MyV and e = Myé.
Denote P as the projection matrix of Z, M = I, — P, and Q = My (P — P)My, where P
is the block diagonal matrix corresponding to P such that the g-th block on its diagonal is
Pg.q1; also denote @ as the block diagonal matrix corresponding to Q. Let M=:4,2"X,

A — ~

I = My (P—P)I=QILT=(Q—Q)], X =24,2"X and X = My (P — P)X. Finally,



we use {); to denote the block diagonal matrix with g-th block Q%¢, and Qy, Q2 and Qy ;

€,
g

are defined similarly.

Lemma B.1. Under Assumption 1, we have
L2 e \2 2
max (H ]H[g]) + max[E (V[Q]V[g]) + ;Iel[ag]c]E (e[g]e[g]) <C,

max (HEQ]H[Q])2 + max E (V[;]V[g])Q + ];rel[ac}iE (e&]e[g])Q < C,

for some constant C' < . In addition, let s = (WTW)'WTé and 45 = (WTW)'WTV,

we have

max H Wig1ve

1<g<G

9 = OP(l), max HW[Q];?VHQ = 0p<1).

1<g<G

Lemma B.2. If Assumptions 1 and 3 hold, then both P and Q) are symmetric, and satisfy
|Pl,, =0(), [P], =00), |P|,=0WK),

Op_

1Qll,, = 0(M), @], =o(1). QI =OWK).

In addition, let P be the block lower triangular matriz corresponding to P — P (i.e. ]5[97;1] =

Pigny for g > h and Is[g,h] = On,xn, Otherwise), then

PP"| =OWK).

;

Lemma B.3. Under Assumptions 1 and 3, we have
@' PPyt = Op(1), @' PPt =0p(1), @ PPywPi=0p(1),

for (@,0) € {V, &} x {V,é}.



Lemma B.4. Under Assumptions 1 and 3, we have

2 2
1 1 _ ~
72 | 2 uPeav | = iy Prngl o) | + 0p(1)
g€[G] \ he[G],h#g g€[G] \ he[G],h#g
2
1 _ N
=5 L E Uy Fnglta1 |+ op(1),
9€[G] he[G],h#g
1 1 - NN ~
K (g Pinaivtn) (wig) Ploanom) = 32 (g Pr.1P11) (81 Pl mim) + 0p (1)
9:he[G]2,g#h 9,he[G)2,9#h
1 . - . -
=% E (i) Pn.g)01a1) (figg Plomin) + 0p(1),

for (u,v) € {V,e} x {V,e}, and the same results hold if we replace P with Q. In addition, we

have

for (u,v) € {V,é} X {f/,é}.

Lemma B.5. Under Assumptions 1 and 3, we have ¥ = C(II'II + K) for some constant

C >0, and
2
1 - i
5 Z X Qrng€lgl
9e[G] \ he[G],h#g
2
1 - i
=5 L E X Qnaa | +orp(1),
9€[G] he[G],h#g
1 —r o2 1 T - \2
=5 2 BE(Mgéq) + 5 E (Vi Quafia) +op(L),
9€[G] g,he[G]2,9#h

~J



[g]

ge[G] \ he[G],h#g
2
1 ~ ~
= E Z X[—er]Q[h g€l | T+ Op(l),
g€[G] \ he|[G],h#g
2
1 N
S D XiQumaXy
g€[G] \ he[G],h#g
1 =T 2 1 =T = 2
- = X ()" + 5 Y E (T Vi)
g€[G] 9€[G]
2
1 T
ts 2L E Vin@mallg
9€[G] he[G),h#g
2
1 ind T g
t5 2 E Vin@naVie | +op(1),
g9€[G] he[G],h#g
and
1 T T
5 2 X Qa1 X(g] Z X Qlk,g1€10]
g€[G] \ he[G],h#g ke[G],k#g
1 AT T AT 5
-5 2 E (0P ()
9€[G]
1 ~ ~ ~
5 L El X ViaQuaVi > VinQuae
g€[G] he[G],h+#g ke[G],k#g

2

9,he[G1?,g7#h

+ Op(l).



and

] ) 5
= Z (X[Z]Q[g,h]x[h]> (X&]Q[h,g]e[go

9:he[G]?,9#h
1 T / YA 3
=5 2 E (‘/[g]Q[ng] [h]> ( [h]Q[h,g]e[9]>
9,he[G)?,g#h
1 ~ ~ ~
S E <V[3]Q[g h]H[hJ> <HELJQ[’1 916[9]> +or(l)

g,he[G]%,9#h

Lemma B.7. Let 3 be a generic estimator of 3. Further define
U = XTzAnQAnZTX,

) - , T , 1 A
S= 30 > XpQuada | + D (X[g]Q[gzhle[h]) (X[’”‘]Q[”’g]e[g]>’

gelC] \ he[Glhg ghelGT2.g7h

T=2 Y (¢ Pemém) .

gth[G]27g¢h



whereézY—XB and

Suppose that 5 L B, then the following holds.

1. If Assumption 1 holds, then

Q7202 = I, + op(1)

2. If Assumptions 1 and 2 hold, then

— =1+ Op(l).

v
v
3. If Assumptions 1 and 3 hold, then
5
E =1+ Op(l),
T
Y =1+ Op(l).

Lemma B.8. Under Assumptions 1-3, we have 3 2> 8 and (B — B)MI'I/VE = op(1).

Alternatively, if Assumptions 1, 2 and 3 hold and HTH/\/F — o0, we have B 2, 5 and

(8- B)ITI/VE = op(1).

Lemma B.9. Under Assumptions 1-4, if the assumptions for a1 and ao in Theorem /.1

hold, then
G 4 ~
T(fh) 75 2g=1 Ui
LM(B) | = \/Lg (de[c] H[Tg]é[g] + Zg,he[cp,g;éh V[;]P[g,h]
AR 7 ZghelcP geh g1 Plah€in)

10

é[h]> + | axd "’OP(l)'



Lemma B.10. If Assumptions 1-4 hold, then

G = ~
x/L@ 2g-1 Hg]]e[g] 0 L p O
% (de[G] H[Tg]é[g] + Zg,he[GP,gv’:h ‘/[;] P[gvh]é[h]) o N O, 1 p

\Lﬁ Zg,he[GP,g;&h éE;]‘D[g,h]é[h] 0 0 p2 1

Lemma B.11. Under Assumptions 1 and 3, we have

\%Q_m > | Ciern) (X )| = %Q_”Z > E| (haeta) (Wgéin) | +or ().

9€[G] g€[G]

and

= (X1 Pomém) (&

D>
s
fay
=z

D>
=
-

Lemma B.12. Under Assumptions 1—4, we have
A p ~ p
Pr—P1, P2 — P2

If in addition the assumptions for ay and as in Theorem 4.1 hold, then

A P A P
Qp —> a1, Qg —> Q.

11



C Proofs of Technical Lemmas

C.1 Proof of Lemma B.1

The first result follows readily from Assumption 1. For the second result, note that for any

g € |G], we have

2
(I ) = <Z H?,g> <oy, <c

i€ly i€ly

In addition, by an abuse of notation, for any i € [n] and g € [G], we denote MI(;,) as the i-th
column of My, and MIE:/)[g] e R™ is vector that collects all elements in the n-dimensional

vector M‘gf,) that belong to the g-th cluster. Then, we have

4

4 _ (@), T
EViy =E | 2, My Vg
9€[G]
. . 2 . .
ORRY0) i), (0),T
<C| X (Mw,[g]MW,[g]> + (Mvv,[g]MWig]> (MW,[h]MW[hJ>
9€[G] 9,he[G]2,h#g
<C,

by the first result and the fact that

(@),T 5 r@) (i), 5 r(3)
2 (MW,[g]Mw,[g1> = My My = My;; < C.
9€[G]

It follows that

2
E (VijVig)* = E (Z Vfg> <CY EV <C.

i€ly i€ly

12



Using the same argument, we also have
T 2
E (efger)” < C,

and the desired result follows. Finally, for the last result, by Assumption 1, we have 4; =

Op(1/y/n) and 45 = Op(1/y/n), and thus

2 2 ~ 12
2 < g x_masx [ W} x el = or(1),

max_|Wig3e

1<g<G

2 =op(1).

2 2 A
> < max ng x_max [Wigl, x |4

max [Wigy

C.2 Proof of Lemma B.2

For the first part of Lemma B.2, the results for P are standard for projection matrix, so we

focus on the results for (). We have
QI = [Mw (P — Pt < [Mwl?, [P - P, = O(1),

and

Q)7 = \/trace(MW(P — P)My, (P — P)My) < C HP — PHF = O(\/?)
In addition, we note that
Q = PyP+ PPy — P,

where Py is the block diagonal matrix corresponding to Py and P is a block diagonal matrix

such that the g-th block on its diagonal is Zle Pw 1901 Pin,n) Pwifng (corresponding to the

13



block diagonals of Py PPy ). By Assumption 1, we have

max Py < max  [Wiglls X Amax (W'W)™h) = o(1),

1<i<n i€ly,g€[G]

and thus

max A P < max n, X max P =o(1
129<G max( W[gg]) S <ecc 97 i<ien W,ii (1),

which implies that Apayx (PW) = o(1). It follows that

@], < |2wP],, + |PPw],

<2|Pwl,, [P, + max > Pwtos Finn Pving
he[G] op

<O max [ Pugon Pwinall,, + o(1)

< € max | P, +o(1)

=o(1).

For the second part of Lemma B.2, we shall use an argument similar to Chao, Swanson,
Hausman, Newey, and Woutersen (2012). A closer inspection of their proof suggests that,
all the equalities in the proof of their Lemma B.2. remain unchanged if we replace P;; with
Py 1) and keep the trace operator; note also that we have trace ((P — P)*) = O(K) so that
(i) of Lemma B.2. still holds. To obtain (iii) of Lemma B.2. we establish results similar to

their Lemma B.1.: for any subset Z, of the set {g, h}gh:p we have

trace(ZPgh (g1 Fg,h] hg> C’Ztrace ])

Is

14



= O(K),

and similarly for any subset Z3 of the set {g, h, k}gh,k:h we have

trace (Z P[gjh]P[mk]P[k,h]P[h,g]) = O(K),

13

trace <Z P[g,h]P[h,g]P[g,k]P[k,g]) = O(K),

I3

and then it is easy to see that (iii) of Lemma B.2. holds. To obtain (ii) of Lemma B.2. we

define, as in their paper, the following random variables

A= D (&P Powi€n + & Plom Pinséie + & Plas Peméin)

g<h<k
Dy = > (§hPing Posiéin + & PomPinsiém)
g<h<k
.
Az = (&5 PosPrmém)
g<h<k

where {&;}", is a sequence of i.i.d. random variables with mean 0 and variance 1, and
independent of Z, W (note that & are not only independent across clusters but also within
clusters), and then it is straightforward to verify that (ii) of Lemma B.2. also holds. These
results, together with a similar argument as in the proof of their Lemma B.3., allow us to

conclude that “P]ST“F = O(VK). This concludes the proof. O

C.3 Proof of Lemma B.3

We focus on the case when % = V and © = é. We have

’f/TPWPé) <A/VTPyV x \/ETPPy Pé = Op(1),

15



because

E <\~/TPW{/) = trace (PwQy) < Amax(Qy)trace (Py) < C,

E (6" PPy Pé) = trace (PP PQ:) < Amax(€2e) Amax (P)*trace (Py) < C,
since d,, is fixed. The other two terms can be handled similarly.

C.4 Proof of Lemma B.4

For the first result, we focus on the case when u =V and v = e. To show

2 2
1 1 - 5
e 2 VinPmaew | — 7 2 VBt | = or(1),
9e[G] \ he[G],h#g 9e[G] \ he[G],hg
we note that
2
1 T
e V[h] Pin,g1€1g]

1 . : ) :
=% (Vi = WinAe) ' Pt (o) — Wigr¥e)
gelG] \ he[Glh#g
2
1 Vi Pingele) — (Win%v) " Pn.giigl
K

We have
2
1 R - 1 R N2
= 2 Wordo) Pogiéta | = 72 25 (W) Rogiin)
g€[G] \ he|G],h#g 9€[G]
Cmax1<g<g HW ~
= Z Hnge }
= op(1),

16



by Lemma B.1, where we use the fact that W TP = 0 and
1 2 C
E= D, [Pogéial, < 1 2, trace(Pyq) = O(1).
9€[G] 9¢lG]

Similarly, we have

2

2
~ 112
1 ~ R maxigy<G HW[Q]”)/(; ~
I Z Z V[Z]P hg (Wigde) | < % : Z Z PlgnVin
9e[G] \ he[Gl.h#g ge[G] ||he[G],h#g )

= op(1),

since

2

1 )
E— > | 2 PenVin| =

g€[G] ||he[G],h#g

Finally, we have

2

A~

17



Combining the above results with the triangle inequality, we have

2y 1/2 o\ 1/2
1 1 i )
T2 2 VinPheew 7 2| 2 Vet +op(1).
9elG] \ helGl.hg 9elG] \ helGl.h#g
In addition, we have
2
1 ~ . 1 ~ = \2 9
B 2| 2 VinPhat | = % < (V[h]P[h,g]e[g]> < C|P[[r/K = O1),
gelG] \ he[G],h#g 9,he[G]2,g#h
which implies
2
1 ~ .
Ve 2. VinPnady | = 0r(1)

Therefore, we have

2 2
2| 2 VinPreew | — % Y. VinPrat
ge[G] \ he[Glh#g g€[G] \ hel[G],h+#g
2y 1/2 o\ 1/2
=1l % 2 Vi i€t - % 1 Fino1€1)
ge[G] \ he|G],h#g ge[G] \ he[G],h#g
2y 1/2 o\ 1/2
“N % > VimPingl€la) % i 1h.91€19) = op(1).
ge[G] \ he[G],h#g ge[G] \ he[G],h#g
Next, we show that
2 2
1 ~ . 1 ~ N
e D Vi Pl | - 2 E > VimPhgé | =or(1).  (C2)
g€[G] \ he[G]h#g 9€[G] he[Gh#g

18



By Markov inequality, it suffices to show that the RHS of the following display is o(1)

2 ) 2
1 - i .
El% VinPogét | = 2, B Z Vi Pl
g€[G] \ he[G],h#g 9€[G] he[G],h#g
——— Ve Prig1€1o1Vim Pie.gl€
K2 [n) £ Th.1€1a) k) FTk.01€1o)
g,h,ke[G]3,h#g,k#g
C - _\2) O - - i
<2V (V[Z]P[h,g]e[gﬁ +t =V > VinPirafa Vi Pk
g,he[G]2,9#h g,h,ke[G]3,g#h#k

For the first term on the RHS of (C.3), we have
=V X (V[ 1Pn.g1€1 ])

~ 2 - 2
- SB[ Y (VinAnada) —E (Vi Praéia)
g,he[G]2,9#h

¢ o 1T 1A% s ST &
<GE| ), trace (P[g,h] (V[h] Ving — ) Ping) (1018 — ))
9,he[G)?,g#h

C v,V ~ e
+ —=E Z trace (P[gﬁ]Qh’ P[h,g] (e[g]e[Tg] — Qg’ ))
g,he[G]2,9#h

C T v,V é,é
+ —=E Z trace V[h]‘/[h] — Qh P[h,g]Qg P[g,h]
g,he[G]2,9#h

In addition, we have

9,he[G1?,g#h

C
< e Z E (trace (P[g,h] (

g,he[G]2,g#h

~
=
=
=
|
=
<
<
N—
=
=,
—~
™
)
[
s
|
-
Q 0
)
~—
N———
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C N 2
< e Z trace (P[g,h]]E (V[h] V[Z] - Q}‘L/V> P[hﬁg]>

g,he[G]2,g#h
S 8\ 2
x trace (P[hvg]E (6[g]€[Tg] - Qg ) P[g,h]>

trace (Plg.n Ping))

where the second inequality is by the trace Cauchy-Schwartz inequality (e.g., Magnus and
Neudecker (2019)). Similarly, we have

1 A% ~ T &,
ﬁE Z trace (P[g,h]Qh P[h,g] (e[g]e[ 1= Qg’ ))

g,he[G]2,9#h
2
1 v T .
:ﬁE Z trace((Z Prg mS2y, ) (e ]e[g]—Qg’ ))
g€[G] h#g
. 2
V.V ~ &6
:ﬁ Z ]E(trace((Z PghQ Phg]> (e[g]e[Tg]—Qg )))
g€[G] h#g

2
V.,V S )2
— Z trace (Z P[g’h]QX’VP[h,g]) )trace (IE (e[g]e[Tg] — Qg’ ) )
9€[G]

h+g

Z trace (Z Pign) QV VPhg]>

ge[G] h#g

C
< = Z trace (P[g7h] P[h,g])
9,he[G]2,g#h

= o(1),

where the first inequality is by the trace Cauchy-Schwartz inequality, and, following the same

20



argument,

2
1 YRy V.,V &
FE Z trace ((‘/[h] [;Iz—] — vav> P[fhg]Qg’ P[g,h]) = 0(1)
9,he[G]2,g#h

Combining these bounds with (C.3), we have
1 - N2
e 2 (V[h]P[h,g]e[gD = o(1).
9,:he[G]2,g#h

Now consider the second term on the RHS of (C.3). We have

- -
K2V Z Vi Pina1a1 Vis P11l
9,h,ke[G]3,g#h#k
2
LK Vit Pl €10 Vim Pik.gl€
K2 Viny Pin.gl€1a1Vik) Flr.g1€la]
ghke[G] ,g#=h#k
2
< CE ‘N/TP ~ <7 Qé,é P y
S K2 Z i Piea (Crorig) = %°) Ploa Vi
g,h,ke[G]3,g#h+#k

2
C T e
+ 1k ( > VinBa % PamVia |
g,h,ke[G]3,g#h+#k

where

9,h,ke[G]3,g#h#k

~ - 2
T s T éé
<= 2 E (Vi P Faéy — 2%5°) Py Vi)
9,hke[G]? ,g#h#k

< o2 Z trace (P[g,h] P[h,g])
g,he[G]2,9#h

= o(1),
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and

2

1 74 é,e v

e > VinPina 2y Flor Vi
g,h,ke[G]3,g#h#k

2

1 N . )
= 2 Vi < 2. Finaf P[g,k]) Vi

h,ke[G]2,h#k g#h#k

2
c  / ee  /
2 E(V[Z](Zp[hvg ng>V>
hke[G]2, h#k g£hAk

% - [GZ]Q h ktrace (((P ~ PY2:(P ~ P)),,,, (P~ P)Q:(P — P))[k’h]>

N

N

™

C
ﬁtrace (P - P)Q2

= o(1).

)
~
|
=
~
|
=
2
~
|
=

This implies that

KQV > VP Vi kgl | = (D). (C.5)
g,h,ke[G]3,9g#h#k

Combining (C.3)—(C.5), we have established (C.2), which further implies the desired result

that

2 2

1 -
% Z Z V 196 | = § Z E Z V[Z]P[h,g]é[g] +op(1).

9€[G] \ he[G],h#g 9€[G] he[G],h#g

Note that, by Lemma B.2 and the fact that WT(Q = 0, we can show

2 2

1 1 -

K Z Z Viny W] =% Z E Z Vi@l | +or(1)
9€[G]

Gl,h#g g€[G] he[G],h#g

in the same manner by replacing P by Q.
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Next, we note that

1
= 2 (ViPugem) (VigPomem)

g:he[G]?,9#h

1 ~ . . . ~ . . .
- = VinPnafla — Win¥e) " Pinaile) — Vi Plng (Wiarde) + Winde) " Ping (Wigrie)
ghelGIg#h | T T ) b > g )
Ugh v Ugh Ugh

1 1
x4 Unimg 3y Uy =0e)

9,he[G]?,9#h g:he[G]?,9#h

1 @2 _ 1 (2),2

K Z Ugh - K Z Uhg - OP(l)’
9,he[G]2,g#h g,he[G]2,9#h

1 32 1 (3),2

IS Up” = % Usy* = or(1)

K he G22 h ! K he[G]? h !
9,he[G]?,g# 9:he[G]?,g#

1 @z _ 1 (4).2

il Z e — U, )" =op(1).

gh hg P
K 9,he[G]?,9#h K 9,he[G]2,9#h

Then by repeatedly applying Cauchy-Schwarz inequality, we have

1/2 1/2
1 s s 1 s1),2 1 52),2
¥ 2 uud<|\g X ouw 2 U] =er
g,he[G]2,g#h g,he[G]2,g#h 9,he[G]?,g#h
for s # 1 or s # 1, whence
! Vi P Vihp
= (VimPigiera) (VigPlomen)
g,he[G]2?,g#h
1 B - i
=% V[Z]P[h,g]e[g]) (V[;]P[g,h]@[h]) +op(1).
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Next, we note that

Vi< Y (VimPeade) (Vi Pawém)

9,he[G]?.9#h

1 : N (ot
=SBl ) (V[Z]P[h,g]e[g]) <V[;]P[g,h]€[h])

9,he[G1?,g#h

7T ~ T ~
- ), E (V[h]P[h,g]e[g]> (V[g]P[g,h]e[h]>
g,he[G]2,g#h

C R s o~ 7
< —E Z trace (P[gﬁ] (e[h]v[;] — Qh’v> P[hy] (e[g]V[;] — Qg’v)>
9,he[G)%,g#h

C ~ &,V é
+ —FE Z trace <<€[h]‘/[£] — th) P[h,g]ngvp[gth

g:he[G]?,9#h

2
ev ~ T &V
+ FE Z trace <P[g,h]Qh P[hy] (e[g]V[g] — Qg )))

where the last equality holds because

1 ~ &V ~ PAY,
EE Z trace (P[g,h] <€[h] [;] — Qh > P[h,g] (6[9]‘/[;] — Qg’v>>

9,he[G1?,g#h

—C s T EAY - T e 2
<qz X E(trace (Pa (Gt - 27) P (Vi - 7))
ghel T

C -
< e Z trace <P[g,h]E (é[h
9,he[G2,g#h

x trace (P[hvg]IE (é[g] ‘7[;] — Qi’v> <~[g]éE;] - Q;/’é> P[gﬁ])

>, trace (P Pig)
[G]2,9#h

=
|
)
> N
<
N———
/N
R
=
™
E—i
|
)
S <
™
N——
=
=,
N——

<C
= o2

g,he

= o(1),
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and

2

1 eV 5o VT &V

EE 2 trace (P[g,h]Qh Pih.g) <6[9]V[g] — ))
9,he[G]2,g#h

—1 &V U eV
= it D, trace ((Z PlonfY, P[h,g]) (e[gJ o] — ng)>
2
—1 ev I R
-~ L E (trace ((Z Plgm, P[h,g]> (e[g] o~ ng>>>

g€[G] h#g

1 eV V,é
S 72 Z[]]tface ((Z Plgn$, P[h,g]> (Z Bt P[k,g])>
gelG

h#g k#g

T &v 75T Ve
Vg — Y ) (V[g]e[g] — ))
¢ Y V&
S 2 2 trace (P[g,h]Qh’VP[h,g]P[g,k]QkV’ P[k,g]>
g,h,ke[G]?,hs#g,k#g

C eV AV, 1/2
— (trace <P[kvg]P[g,h]Qh’VQZ’ P[h,g]P[gak‘]>>

X trace (E (é

V,EneEV 12
X <trace (P[hg]P[g?k]Qk’ Q) P[k,g]P[gﬁ]))

trace (Pik.g) Plg.n Ping) Plg.x1)

Z trace (P[g,h] A [h,g])
g,he[G]?,9#h

1 U A% é
EE Z trace <<6[h]‘/[2] - Qh ) P[hyg]Qg’VP[gﬁ]) = 0(1).

This implies that
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1 ¥ ~ g ~
-% 2 E (V[Z]P[h,gle[gl) (V[J]P[gme[h]) + op(1).
[G]2,9#h

g,he

Note also that we can replace P by @, as in the proof for (C.1) and (C.2), and this concludes
the proof for the first result.

For the second result, we focus on the case when @ = V and & = é. Recall that
Q= My (P—P)My =P — P+ PywP + PPy — Py PPy,
which implies that

Qg = Ping) + PwingPio.g) + P Pwing — D, PwinnPresPvikg, 9 # h

ke[G]
Therefore, we have
1 ~T _\2
i E (V[h]Q[h,g]e[g]>
g,he[G]?,g#h
2
1 ~ -
=% E (Vi | Pira + Pwina Pog) + P Pwgng) — >, PwinisPrss Pvieg | e | -
g,he[G]?,9#h ke[G]
where
1 T ~ 2 C
% E <V[h]PW7[h’g]P[g7g]6[g]) < = Z trace (PW,[g,h]PW,[h,g]) = 0(1),
g,he[G]2,g#h g,he[G]2,9#h

since d,, is fixed,

1 ~ N2
K E (V[J]P[g,g]PW,[gﬁ]@[g]) = o(1)
9,he[G]?,g#h
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by the same argument as above, and

2

1 - i
a E Vi | Do Pwns PesPvieg | e
9,he[G]2,g#h ke[G]
C _ _
<= Y wace ((FwPPw)y, (FrPRr),,)
g,he[G]2,g#h
C _ _
< Jptrace (Pw PPy PwPPy)
= o(1).

It follows that

1 . . 1 ~
= 2 EL D ViQuada | =% 2 E| X ViiBnaf
9€[G] he[G],h#g ’

Similarly, we can show that

E (V[Z]P[h,g]é[g]) (V[;] B [g,h]é[h]>
G12,9#h

g,he
1 ¥ ~ - ~
K >, E (V[Z]Q[h,g]e[go (V[;]Q[g,h]e[h]> +o(1).
9,he[G]?,g9#h

1
K gnet

This concludes the proof.

C.5 Proof of Lemma B.5

We prove each result in turn. To begin with, we note that

A —I— - g T ~
rx=V Z Uil | +V 2 VigPlomérn |
9€[G] 9,he[G)?,97#h
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where

R N 1 -2 1
T | T T T
v X e | - E(176) > S0 > Zn',
g€[G]
and
2
E( > VigPeum
g,he[G]?,9#h
T =) T > Al
= Y E(VpPamem) + E (Vg Poéon) (Vi Pngi
g,he[G]2,g#h g,he[G]2,g#h
1 ~ ~ - ~ 2
=3 >, E [(V[Z]P[h,g]e[gﬂ + (V[;]P[g,h]e[h])]
g,he[G]2,g#h
2
1 L Ongxnp,  Plgn] €[n]
=5 2, E (%J V[g]) )
9,he[G]?,g#h P[g,h] Ongxnh ‘/[h]
1 Ongxn B R On XNg Ph7
S - 2 trace h [g,h] h [h.9]
9,he[G]2,97h P[g,h] Ong Xnp, P[h,g] Onhxng
1
o 2 trace [Py P
g,he[G]2,9#h
1 2
= Z trace [P[g,g] — P[g’g]]
g€[G]
1
> 5 2 (1= Amax(Plog) trace [Py
9€[G]
1
> —K.
C

These two lower bounds imply the desired result that

Y > (' + K)/C.
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Next, we note that

2 T > ST >
+ 5 [h]Q[h,g]e[g] Z H[k]Q[k 91€[9]
9€[G] \ he[G],h#g ke[G).k#g
For the first term on the RHS of (C.6), we have
2 2
1 T > T >
Ec| 2 | 2 OwQuafa | — 2L E{ 2 TjQuafs | | =0,
9elG] \ helGl.h#g 9¢lG] he[G],h#g

and by Assumption 3

< C'max;<g<c Hﬁ[g]Hz '

(IITTI + K)?
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Therefore, we have

2 2
1 ~ 1 .
EZ 2 T Q91611 =§ZE Z Qg | +op(1).  (C.7)
9¢lG] Gl,h+#g 9€lG] Gl,h#g
For the second term on the RHS of (C.6), by Lemma B.4 and the fact that K/¥ = O(1),
we have
2 2
1 ~ s 1 ~ .
S > > VinQuuaf | = 5 YEL DL VinQuaf | +or(l).  (C3)
9e[G] \ he[Gl.hg 9¢[G] he[G],h#g

For the last term on the RHS of (C.6), we have

1

Ef Z 2 H Qk.91€1o) Z V[;]Q[h,g]é[g] =0,
ge[G] \ ke|G],k+#g he[G),h#g
and
1 - i i
v 5 Z 15 Qrk.g1€14] Z Vi Qln.g1€10]
g9e[G] \ ke[G],k#g he[G],h#g
2
1 L i
= 5ok Y e Vi Quialéial
9,he[G]?,g#h
2
T (5 =T & ¥
<wE( 2 T Gl — 95°) QuomVin
9,he[G]?,9#h
2
C _ -
Bl 2 TR QuanVin |
g,he[G)?,g#h
where
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C AT (5 =T éé 5 )?
<o Y E(0f ) — 25°) QuaVin)
9:he[G]?,g#h

C maxi ¢ < Hﬁ[ ]H2
< ;2 g2 2

= o(1),
and
2
1 . -
Bl 2 Ty Qun Vi
g,he[G]2%,g#h
1 T N2
- SE (7@ - Q)
CI'I
(' + K)*
=o(1).
Therefore, we have
2 v = ~
b3 Z Z V[EJQ[hy]e[g] Z HT Qlkg1€[9 | = 0or(1). (C.9)
€[G] \ he[G],h#g G],k+#g

Combining (C.6)—-(C.9), we have the desired result that

ge Gl,h#g g9€[G] \ he|G],h#g
2 2
1 ~ _ 1 ~ _
-y L E Qo | +5 2 B X VinQuada | +or(1)
9€[G] he[G],h#g 9€[G] he[G],h#g
2
1 - i
= i E X[h]Q[h7g]6[g] + Op(l)
g9€[G] he[G],h#g
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Next, we note that

2
1 ~ -
D Z Z Xn@maer | — Z X[IL]Q[h q]
ge[G] \ he[Glhzg g9elG] \ he[Gl.h#g
2
1 . .
=5 X Qi Wig Ve
9e[G] \he[G].h#g
2 5 . 5 ~
> Z Z X QungWig1ve Z X Qe.g1€191
G hE[G] h#g kE[G],k;ﬁg

For the first term on the RHS of (C.10), we have

2

1

S Z X3 Qina Wio)¥e
ge[G] \ he[G],h#g

2

1 )
255 2 | 2 QuanXm

g€[G] ||he[G],h#g

~

< max [Wigre

2

C _ ~
255 2 Ml + | Y QuaVin
9¢lG]

< max H g Ve
1<g<G

he[G],h#g

= OP(l)a

by Lemma B.1. For the second term on the RHS of (C.10), we have

1 _
5 2 ZX Wiave ZX [k.1€1g]

9G] G],h#g ke[G,k#g
o\ 1/2

1 )
<y X Z Xy Quna Wisrie EZ@ > XiQua

ge[G] \ he[G],h#g

= OP<1).
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Combining the two bounds above, we have the desired result that

2 2
1 v T 1 ST -
sl 2 XhQuacm | =5 2 | X XinQuedw | +or(D).
g€[G] \ he[G],h#g ge[G] \ he[G],h#g
Next, we note that
2
L X Qg X
n [R] ¢ [h,g]<*[g]
g€[G] \ he[G],h#g
1 _ 5
=5 2 (X))
. 9€[G] )
R,
2
1 N
+ 5 Z Z Vin Qrr.a X9
g€[G] \ he|G],h#g
Ra
1 _ .
t2xg Y, X Vi Qua X (C.12)
9,he[G]2,g#h
Rs
For R;, we have
1 =T 2 1 — - 2 2 — T _
Ri=s 2, (Tgl) + 5 2, (MigVig)” + 5 2, Miglia) (M Vi)
g€[G] ge[G] ge[@]
1 =T 2 1 =T\, 2 T AT 1
== 2 ()" + = Y (TiVia) + 5 2 (M) (Vi) +or(1)
g€[G] 9€[G] g€[G]
1 _ 2 1 - & 2
=5 2 [Mglg) +5 2, E <H[g] [g]> +op(1),
9€[G] 9€[G]

where the second equality holds by using Vig = Vi) — W[}y and Lemma B.1, and the last

equality holds because



maXge[d Hﬁ[g] ”; '

R (ITTTI + K)?

and

MaXge[d HH Hz
h (ITTI + K)?

9€[G] 1,h#g
Ros
1 -
+2x 5 > VinQmally Z Vin
ge[G] \ he[G],h#g Gl,k#g

\
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For Ry, we have

. 2
V(Re) < 55V (V[Z]Q[hvg]n[y])

9,he[G]%,g#h

9,h.ke[G]3,g#h+#k

where

N

and

1 ~
52V (V[Z]Q[h,g]ﬂ[g]) (V[Z]Q[k,g]ﬂ[g])

9,h,ke[G]3,g#h+#k

1 - ~
= E > (V[Z]Q[h,g]ﬂ[g]) (V[Z]Q[k,g]ﬂ[g])

9,h.ke[G]3,g#h+#k

C . . 2
<y ) E <(V[Z]Q[h,g]ﬂ[g]> (V[Z]Q[kz,g]ﬂ[g]))
9,h.ke[G]3,g£h#k
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C

< S Z trace (Qn.q1Qls,

9,h.ke[G]3,g#h#k

=o(1).

This implies that
Ry = 1 E V
z
9€[G] he[G],h#g
For Ry, since K /¥ = O(1), by Lemma B.6, we have
Ry = ! E V
z
g9€[G] he[G],h#g

For Ry 3, we have

1 5
Ry 3 = 5 Z Z V[Z]Q[h,g]ﬂ[g]

g9e[G] \ he|G],h#g

= Op(l),

where the second equality holds because

n) 1 (Qr.g Qo)

+ Op(].).

Z Vi Qg1 Vigl

Gl.k#g

| i i )
Ec D | 2 VinQuall > ViQuaVig
]

g€[G] \ he[G]h#g ke[Glk#g

—_

Vi Qungi Mgy
9€[ ] h#g

<&
S 32

g,he[G]2,9#h
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C N
+ 55V > Vi@l Vi QuaVig |

9,h,ke[G]3,g#h+#k

where
1 5T T y
=V 2 Vi@l Vi Qe Via
g,he[G]2,g#h
2
< ¢ \Y I, Qv Vi
S v Z [Q]Q[g,h] ' Qg Vil
g,he[G]2,g#h
C T T v,V ¥
+ ﬁV Z H[Q]Q[g,h](‘/[h]‘/[h] - Qh )Q[h,g] lg]
g9,he[G]?,g#h
2
C v,V
<5 Y Qui " Qg | Ui
9€[G] he[G],h#g 2
C T T v, 2
+ 52 E (V[h]Q[h,g]H[g] V[h]Q[hvg]V[g]>
g,he[G]2,g#h
C
< 2 Z trace (Q[h,g]Q[gﬁ])
g9,he[G]?,g#h
=o(1),
and
1 V VT H vdl ¥
S > 111 Qhg i) Vi Q.o Vi
g,h,ke[G]3,9#h+#k
2
1 5T 5T y
= SE > VinQualmVihQumaVia

9,h,ke[G]3,g#h+#k

C ~ - - 2
< 22 Z E (V[Z]Q[h,gln[g]v[g]Q[k,g] [g]>
g,h,ke[G]3,g#£h+#k

C
<y 2, trace (QugQun) trace (QuigQuon)

9,h,ke[G]3,g#h+#k

= o(1).
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Combining the results above, we have

1 - 1 ~ -
Ry = E Z V[Z]Q[hyg]n[g] + 5 Z E Z V[Z]Q[hﬂg]v[g]

For R3, we have

1 =T T
=35 )01 Vi) Qrnr o)
9,he[G]?,9#h
1 _ -
S I g [h]Q[h AVl
g:he[G]?,g#h
1 _ -
S (Vi) Vi @rigi o)
g:he[G]%,9#h
Ry
1 _ -
> Ty Vig) Vim Qingl Vi)
9,he[G]%,g#h
Ry.a

For R, it has mean zero and

1 _
V(Rs1) = 2k Z [ i) Vim Qagt gy

9,he[G1?,g#h

8. _
<% S DL Qugllglly, I,

helG1 | gelGlg#h ,

2

—

c 7T
<55 2 | 2 QualllgHy,
9¢lG]

he[G] 9
2
c T
ST 2, Quallig Mgy | -+ o(1)
he[G] ||ge[G] 9
= o(1),
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where the last equality holds because

2
1 sl
55 2 | 2 Quallia Ty )

helG] || ge[G]

For Rs39, we have

1 _ . )
Rsp =5 ), Ty ViQua Ve + or(1),
[G]?,9#h

g;he

where the first term has mean zero and

1 _
-E| X TV Qua Vi
¢ =T 5T - 2
< 2 Z E (H[g]H[g]V[h]Q[hvg] V[Q])
g,he[G]2,9#h

_ C' maxeq Hﬁ[g]H; Z

< < trace (Q[n,g) Qlg.1)

g,he[G]2,g#h

=o(1).

By using the same argument, we also have R33 = op(1). For R34, we have

1 7T 1/ T
Rya =5 > O VigVimQumaWia + or(1),
g,he[G]2,9#h
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where the first term has mean zero and

1 =T v T ¥,
A\ ) 2 H[g]v[g] [h]Q[hﬂg] [9])

9,he[G]2,9#h

g,he[G]2,g#h

C =T VLV y
<%=V X TR QuaVs

¢ o o - N
5V 2 T(Via Vi — 9 )Qum Vin
g,he[G]2,9#h
< gE (1@ - Q)
C

2

o

ter oy B ihemaia)
g,he[G]2,g#h

T 2
< Cl;QH Omane H H2 Z trace (Q[hvg]Q[ng])
9,he[G]?,g#h
=o(1).

Combining the results above, we have Rs = op(1).

Therefore, by combining (C.12) with the calculations about terms Ry to R3, we have

2

13 (3, Taensr) -1 3 ZGH

g€[G] G],h#g Z
1
+5 2L E >V
ge[G] he[G],h+#g
1 ~
g€[G] Gl,h#g

Finally, we note that

1 T
Z D XiQuaXy Y XiaQuwaer
G I

M |
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ge[G] \ he[G],h#g ke[G),k+#g
P
1 . .
+5 2 XiQuaVia || 2 XfQuact |- (C.13)
g9€[G] \ he[G],h#g ke[G),k#g
Fs
For R4, we have
1 . . )
Ry =5 > XnQually > XQuatt | +or(1)
9€[G] \ he[G],h#g ke[G],k#g
1 AT 7T 5
=5 2 [Tiglly) (L)
_ oElel B
R

1 Ml T ~
w2 (i) (V[h]Q[mg]e[g])
9,he[G)?,g#h

1 - I ~
5 Y (Vin@ually) (0fé0)

Ris
1 [/ ~
i) Vim@in.a ) N Qg | For()
QE[G] hE[G],h;ﬁg k’E[G],k;ﬁg
Ria

By using a similar argument as in the proof for R;, we have Ry; = op(1). For Ry, it has

mean zero and

g:he[G]?,9#h

C _ 2 ~ 5 2
w2 (Tyly) E (Vil Qo)

9,he[G]2,g#h
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trace (Qng Qrgn)

- Cmaxge[GQ] Hﬁ[ngi Z
by 9,he[G]2,9#h

= o(1).

Therefore, we have Ry5 = op(1). Using the same argument, we also have Ry3 = op(1). In
addition, by using a similar argument as in the proof for Ry 3, we have Ry4 = op(1), which
implies Ry = op(1).

For Rs5, we have

1 . - . .
Bs = 2 XiQuaVia 2 XQuatt | +or(1)
ge[G] \ he[G],h#g ke[G],k#g
1 IR, T
DS (H[g] [g]> (H[g]e[g])
_ velel .
Ry
1 or.v VT =
S [o] [g]) ( [h]Q[h,g]e[g])
9,he[G]?,g#h
Ry.s
! Vi Vi1 ) (O] 1€
+5 11 Qa1 Via) ) (Tigégs)
9,he[G]?,g#h
Ry
1 - - _
5 Vi Qi1 Vi) 2 ViQuafr | +or(1).
g9€[G] \ he[G],h#g ke[G).k#g

In addition, by using a similar argument as in the proof for Rs 4, we have Rs2 = op(1) and
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Rs3 = op(1). Lastly, by using a similar argument as in the proof for Rs 5, we have

1 ~ ~
R5,4 = ig;G]E 2 V hg]‘/[g] 2 V 9]€[g] + Op(l).

G|,h#g Gl k#g

Combining the results with (C.13), we have

ge[G] \ he[G],h#g ke[G) kg
1 THIRT T
s L E (H[g] [g]) (Mg étq))
9¢[G]
1 ~ ~
" D) E Z V[Z]Q[h gVl Z V[T]Q[k a€191 | +or(1)
9€[G] he[G,h#g ke[G].k#g

This concludes the proof.

C.6 Proof of Lemma B.6

For the first result in Lemma B.6, we note that

1 - -~ ~
S Z (X[TQ]Q[g,h]e[h]> (X[Th] Qln.g) 3[9])

9,he[G1?,g#h

1 T ~ T <
-5 X (H[g]Q[g,h]e[h]) (H[h]Q[hy]e[g])
9,he[G]?,g#h
Rq

1 - ~ < ~
voxg N (MQumtn) (KhQuac)

9,he[G]?,g#h

. J/
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For Rg, it has mean zero and

1 - A )
V(Be) =B | D (HE;]Q[g,h]e[h]) (H%Q[h,g]e[g])

N
4
=
RS
—
E%
O
2
=
H@l
=
jam
=
O
=
L,
[N
s
~—
o

9,he[G]?.97h

C
< S Z trace (Q[g,h]Q[h,g])

9,he[G]?.9#h

= o(1),

whence Rg = op(1). For Ry, since K/ = O(1), by an application of Lemma B.4, we have

1 ~ - ~
=5 2, E (VQ]QL@M@[H) (V[Z]Q[h,g]e[gﬁ +op(1).

g:he[G]?,g#h

For Rg, we have

1 T ~ T &v >
2k 2 Q@ (€[h] Vi = ) @1

- C
= oy2
g:he[G]?,9#h



and

C
< w5 Z trace (Q[g,h]Q[h,g])

g9,he[G]2,9#h

= o(1),

2

/A
alQ
Q
o
Q
o+
—
ja¥
o
@
VR
-~
>
LS
Q
O
Q
=
2
>
<
L)
=
L,
~—__—
<D
g
O
Q
=
)
=
O
Pl
L,
~_—
~__—

1 % g % ~
) (X[Q]Q[g h]e[hl> (X[h]Q[h g]e[g]>
g9,he[G]?,g#h
1 =~ ” ~
S E <V[9]Q[9 h]e[hl) ( [E]Q[hg]e[g]) +op(1)

2 g,he[G]2,g#h
1 - i . i
-3 (X[g]Q[g h]e[h]) (X[h]Q[h g]e[g]>
9,he[G]?,g#h
1 v T 2 X A
ts ( (g Ql.1] W[hwé) ( 1 Qlngl W[gwe)
9:he[G]?.9#h
2 T 5 T >
% ( 10 @l h]W[hwé) <X[h]Q[h9]e[9]>7



where

2
2

2 1 ~
bhxs 2 HQ[h,g]X[g]
g,he[G]2,g#h

by Lemma B.1, and

1/2
1 . N2
<3 Z X[g]Q[g,h]W[h]%>
g,he[G]2,9#h
1/2
1 T - 2
X 5 2 X[h]Q[hg]e[g]>
9.he[G]2,g#h
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Next, we turn to the third result in Lemma B.6. Note that

1 B N
S Z (X[—;]Q[g,h]X[h]> (X[;]Q[h,g]X[gO
g,he[G]2,g#h

1 T T
-5 X (X[g]Q[g,h]V[h]) (X[h]Q[h,g]V[g])
g.he[GI2.g#h

Rio
1 ST T
F2xg ) (X[g]Q[g,h]H[h]) (X[h]Q[h,g]V[g]) :
9,he[G]?,g#h
P

By using the same argument as in the proof above, we have

1 _ )
Ro=w 2, E (X[Z]Q[g,h] [h]) (X[Z]Q[h,g] [g]> +op(1).

9,he[G]?,g#h

For Ryy, we have

1 . )
F2xg ) (H[TQ]Q[g,hJH[hO (V[ZJQ[h,g]H[g]) :

Note that
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and
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N
>
ol
Q
Q
EQ\
o
Q
(V)
&
EQ\
Y
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N
>
o
Q
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o
Q
(V)
&
E'Q\
W
>

/N +

Ul Yo Yo Yo
e
=
L,
o
<
=
L
=
g
=
<

>
m
Q

trace (Qpn.gQpgn1) trace (Qpng1 Qg .n)
19.9'€[G)?,9,9' #h

Therefore, we have

1
R = 5 (1151 Quo T ) (T Qi) + 0 (1):

9,he[G1?,g#h
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For R;i, we have

1 . ) N
Ri=g ) (XgQuallm) (X(QuaVia) +or(l)
2 g,he[G]2,9#h
1 N N ~
-5 2 (115 Qe i) (11 @ Vi)
9,he[G1?,g#h
erl
1 N N )
) (117 Quitlin ) (Vi Qe Via)
9,he[G]2,g#h
RI,Q
! T Q) (7 Q¥
S| ( (g1 @lo.h) [h])( (1 Qlhg] [g])
9:he[G]?.g#h
RI,S
1 T T ¥
1> (V[g]Q[gvh]H[h]) (V[h]Q[h,g] [g]> :
9:he[G]?,g#h
RI.A

By using a similar argument as in the proof for Rjp; and Ryg2, we have Ry;1 = op(1) and

Ry15 = op(1). For Ry 3, we have

1 3 ) )
ViR =B Y (VinQuallm) (MQnaVia)
g,he[G]2,g#n
2

C
<§Z Z Qgh Q h,g]

g€[G] || he[G],h#g I

~ - 2
> (1 Qua Q)

he[G]2,h,h #g
h/

\

C
2

> (0] Qg Qe Tiwy)

€[G]2,h,h #g
C
o8 2,

€l

]
G]2,h,h/ #g

trace (QpgnQrng1) trace (QgnQpw g)

\

2
e[G] h,
C
=P
e[G] h,
p
€[G] h,h'e

= o(1),

49



and thus

1 ~
Rug=5 2 E(ViQuul) (T5iQumaVia ) +or(D).
[G]2,97#h

g,he

For Ry 4, we have

1 - ~ ~
V(Ri14) <V 5 Z V[Z]Q[h,g]Q;/’vQ[gﬁhln[h]

1 - ~ ~ ~ o~
Vs D ViQua(VigVig — ) Qe |

where
1 .
Vis D VinQua® " Quuln
g,he[G]?,g#h
2
1 5T ey
= i 2Vl 2 Quay ! Qum |
helG] 9€[Glgh
CTITII
(1l + K)?
=o(1),
and

1 - ~ ~ ~ ~
Vieg 2 VinQra(ViaVig — ") Qe

9,he[G1%,g7#h

9,he[G]?,g#h

~ ~ ~ 2
> E(V[Z]Q[h,g]V[g]V[;]Q[g,h]H[h])
9,he[G]?,9#h

C
<5 Z trace (Qpn.g1Qrgn)

9,he[G1?,g#h
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= o(1).

It follows that Ry;4 = 0p(1), whence

1 .
Ru=5 », E (V[;]Q[g,h]ﬂ[h]) (H&]Q[h,g] [g]) +op(1).
[G]?,9#h

g,he

Combining the results above, we have

9,he[G1?,g#h

_ Z (X[T]Q[g,h]X[h]> ( [Th]Q[h,g]X[g]>

Finally, for the last result of Lemma B.6, we note that

1 B N
S 2 (X[Z]Qbﬁ]X[h]) (X£]Q[h7g]6[g]>

g,he[G]2,9#h

> (KEQuavin) (X5Quacm)

9,he[G]2,g#h

( Ml’_‘

1 ~ -
+ S <X[—g]@[g,h]ﬂ[h]) <X[E]Q[h,g]€[g]) :

9,he[G]?.9#h

v~

Ry3

By using the same argument as in the proof for Ry, we have

1 o ~ N
Rip = 5 Z E (X[E]Q[gyh]v[h]) (X[E]Q[hag]e[go +op(1).
9,he[G]2,9#h
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In addition, by using the same argument as in the proof for R;;, we have

1 . - )
Ro=5 Y, E(VijQuatln) (MhQpaéa) +or(1).
9,he[G])?,g#h

It follows that

This concludes the proof. O

C.7 Proof of Lemma B.7

Throughout the proof we denote A = ﬂ — 3, and note that A = op(1) by assumption. We

divide the proof into four steps.

Step 1: Consistency of Q. Note that 1/C' < Amin(2/7) < Amin(€2/n) < C by Assumption

1, and thus it suffices to show that

1.1
EQ - EQ = Op(l)
Let
~ N L N\T - T
Q= > (xf) () and Q= > (zpe) (2em)
gelc] v
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We aim to show that

1~ 1

“0 - 20 = op(1),
n n

1o 1~

—Q — —Q = Op(l),
n n

1. 1_-

0 20 =op(1)
n n

For (C.14), consider its (j, k)-th element for 1 < j, k < d,, given by

=
<
™
—
S
=
™
o
=
PN
—
s
=
b
~
—

1 T 5 =T T
n 2 [tasfeinzas — E (4,
9€lG]

(C.14)
(C.15)

(C.16)

where we use z[y) ; (2[4],%) to denote the j-th (k-th) column of z;; note that it has mean zero

and

1 T o ~ ~ NT
N4 n [Z[Q] €191€1g)%Ig)k — (z[g] i€l91€[g) Lol .k
9€[G]
1 T =~ AT 2
< = 2 E(,0m ak)
g€[G]
1 T 2
S n2 21g1.%19).3 %),k XTa) kI (e[g]e[g])
g€[G]
2
Cmaxielg,ge[G] HZZ',QHQ 1 T
= n X E Z[g] ]Z g] J

by Assumption 1, and the result follows since d, is fixed.

For (C.15), its (j, k)-th element can be written as

1 T T T 5 5T
n 2 (lsemeioae = 280 2l e)
9¢[G]

S|

Z <Z[:v]7jW[g] Aé)<28;],kW[g]%)
9€[G]
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We have

g€[G]
<y | 20 (g Wiaie)* < |- > ClWiade)
9€[G] g9€[G]
2 1 1
S 1r<nga<XG HW[Q]%HQ X n Z ZE;]JZ[g]J “A 5 Z Z[T] K=lg) K
h 9€[G] 9€[G]
2 (1! T (1 T
< maxc [Wighel, < o] | 5 20 mamly Jux ol | o0 20 Fas o
IS i€lg,9€[G] i€ly,9€[G]
= op(1)

by Assumption 1 and Lemma B.1, where we use v; (vi) to denote the d,.-dimensional unit

vector with j-th (k-th) element one and other elements zero; we also have

and by using the same argument,

1 2 ~
n Z (Z[E],kW[g]7~)(Z[;],j€[g]) = op(1).
9¢[G]

o4



For (C.16), its (4, k)-th element can be written as

T T
. (Z[g]ue[g]6[9]2[9]7/C ~ “[g1,5€191€[g1 %] k)
g€[G]
A? T T
= s (z[g]]X[g])(Z[g] IcX[g])
g€[G]
A T

T (Z[g] jX[g])(Z[g] k€lg))

9€[G]

A T T

= — 24 CraXia) (g s€ta)

9€[G]

and note that

1 T T 1 1
~ 2 (s Xia) (e aXio) < 4 [~ 2 2241005 X 1y Xl X \/ ~ 2 Al X Xl
9€lG]

since maxge(q) E <X[Tg]X[g]> = O(1) by Lemma B.1; the other two terms can be handled

similarly.

Step 2: Consistency of g By Assumption 2, we have

1 1 1 1
—2TX = =2+ —2"V = =2l + 0p(1), (C.17)
T'n T'n Tn T'n
and note that
1 - 1 1 .
1 1 A 1
= A (A A AL AL — 1) (5 A
1
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where )\, = A\nax(A4,). In addition, we have

Therefore, we have

¥ B XTzfanAnzTX _ (%XTZ)(
U I724,Q4,2TI - (LI72)(

n

by Step 1.

Step 3: Consistency of 3. Define

S=FE (ﬁT(Q - Q)é>2 +E (VT(Q - Q)é>2 :
and recall
S -F (ﬂTé)2 +E (f/T(P - P)é)2 _E (fITQé>2 +E (VT(P - P)é)2.

Using the notation [ X|p, = (E (XQ))l/Q, we have

2

2 ~
i rQe —HHT —Q)e V(P - P)é —HVT —Q)e
sy |lred, -[ire—ar,| |[vre-pef,-|re-od,
> | ) )
~ _ ~ 2 ~ _ 2 - 2
20Qe| Qe +|TQe| vip-Pe ~|VTQ-)y
- P2 P2 P2 |, P2 P2
D ) )
~ _ - _ 2 - _ 2 - 2
2 ‘HTQé‘ ’HTQé‘ + ‘HTQé‘ (VT(P—P)(;( _ ‘VT(Q—Q) ‘
- P2 P2 P2 |, P2 P2
= 711 K
= o(1),
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where the first inequality is by triangular inequality, the second inequality is by Cauchy-

Schwarz inequality, the third inequality is by Lemma B.5, and the last equality holds because

N g s
E(7Q¢) < C Q| i = o(i1'm)
by Lemma B.2, and
Lo (o s\ L 5T - \? T . 5T N
B (V (@~ Q)€> =% 4 ( 1@l h]e[h]) + (V[gJQ[g,h]e[hﬁ (V[ 1Q@1n.91%1g 1)
9,he[G]?,g#h
1 5T - \? 5 < 5T <
% E ( [g]P[ghle[h]> +( [g]P[gh]eth]) (V[h]P[hg]e[]> +o(1)
g,he[G]?,g#h
1 /oo 2
- = (v (P— P)e) +o(1)
by Lemma B.4. Therefore, we have
2 1
b
In addition, note that we can write
2
2= ) E Z XpQuae | + ), E (X[E]Q[g,h]é[h]) (X[h]Q[h,g]é[g])’
rEel he[G,h#g g,he[G]2,9#h
as in Chao et al. (2012), and thus
B B 2 2
o8 1 _ 5 .
5 -3 > Z Xin@Quaf | — D Bl D) XmQuafl
9€[G] Gl,h#g 9€[G] he[G],h#g
Rus
L1 Do he[CI2 g h (X[Z]Q[g,h]é[hﬁ (X[Z]Q[h,g]é[g])
)Y > . o .
g heGl2,g2h B (X[E]Q[g,h]@[ho (X[E]Q[h,g]e[g])
Rts
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2

2

1 o o
+§ Z Z Xn@male | — Z Z X(m@in.g)flo)

ge[G] \ he|G],h#g ge[G] \ he[G],h#g

Rio
L1 Do he[C12 gk (X[E]Q[g,h]é[hﬁ (X[E]Q[h,g]é[g])
> - _ i i
= Dy he[Gl2.g%h (X[I,]Q[g,h]e[h]) (X[E]Q[h,g]e[g])
Rur

Note also that, by Lemmas B.5 and B.6, we have Ryy = op(1) and Ry5 = op(1).
For Rg, we have

2

\

1 T s T
Ro==| 2| 2 Xi@Quoda | - 2 XiQrgew)
ge[G] \ he[G],h#g 9€[G] \ he[G],h#g
Rzg,l
2 2
1 T v =
+ 5 XinQ@maer | — 2 Z X Qlh.g) €]
g€[G] \ he[G],h#g g€[G] \ he[G],h#g
R;gz

For Ry6,1, we have

Rig1 = 5l X[h]Q[h,g]X[g]
ge[G] \ he|G],h#g
2A - .
-5 X Qirg1 Xg) Y XiaQuaer
ge[G] \ he[G],h+#g ke[G),k#g
By Lemma B.5, we have
2
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since

1 _ 2
f (H&]H[g]) = > 20(1)7
g€[G]
1 —T & \2 CII'II
g€[G]
2
1 ~ CIITII
5 E Vi Qg | < > Oo(1),
g€[G] he[G),h#g
2
1 ~ ~ C
s LE m@naVia | <5 >, trace (QuuQpug) = O(1),
g€[G] he[G],h#g g,he[G]2,g#h

1 i ~
b 2 XQuaXu) > XQuraer | = Op(1),
9e[G] \he[Glh#g ke[G] kg
since
1 T Y/ =TT ~ C].:[TI:.[
b 2 E(H[QJ [gl) (M) | < —— = 0(1)
g€[G]
and

Z Z V hg]v[g] 2 V kgé

e[G] he[G],h#g Gl,k#g

>, trace (QuuQpug) = O(1),

g.helG1?.g#h

N
M‘l Q MI

It follows that Rig1 = op(1l), and since Rig2 = op(l) by Lemma B.5, we have Ry =

OP(]_).
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For Ry7, we have

Rz =

_l’_

M| —

Synetcran (X Q) (XiQunaiéis))

— 2y helGI g (X[Z]@[g,h]@[h]) (X[E]Q[h,g]e[g])

\

1
)

~
Ri71

getcr gen \ X Quonem ) (X Qg
> X
= Yyt gen (X Qunnn) (X Qo)

Y

For Ry7,, we have

By Lemma B.6, we have

M| =

g,he

T T
)3 (X[g]Q[g,h]X[h]> (X[h]Q[h,g]X[g]
[G]2.9#h

Ri7,2

trace (Qn,gQrg.n])
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By the same lemma, we also have

since
1 T ) ST ~ C
5 E (X[)QunVin) (XgQumate) | < 5 2 trace (QugQum) = O(D),
g,he[G]2,g#h g,he[G]2,g#h
1 - -~ . CITI
5 I (V[;]Q[g,h]ﬂ[hﬁ (Hﬁ]Q[h,g]e[g]) <——=0()

It follows that Ry7;1 = op(1), and since Ry75 = op(1) by Lemma B.6, we have Ri7; = op(1).

Combining the results above, we have

DM
ol
M

and the desired result follows from /% — 1.

Step 4: Consistency of T. We have

T — T 1 5 - 2 ~T ~ 2
——=2xx | 2 EuRemin) - Y E(@EgRemém)
9,he[G]?,g#h 9,he[G]?,g#h
Rus
1 T 2 ~T ~ 2
2x x| 2 (qgPenem) = Y (ElgPloném)
9,he[G])?,g#h 9,he[G]?,g#h
Rio
1 2 2
2x | 2 (Bendn) — Y (elgPonem) |,
9,he[G]2,g#h 9,he[G]2,9#h
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and note that

~T ~
T = V Z e[g]P[g’h]e[h]
g,he[G]2,g#h

~T ~
=E Z €191 g,n1€1n]

~T ~ 2
=2 Y E(&,Pymém)
g,he[G]2,g#h

-9 Z trace [Qjép[g,h]Qfé{éP [h,g]}
9,he[G]2,g#h

Z trace [P[g,h]P[h,g]]

9,he[G1?,97#h

K. (C.19)

=

Ql =

=

Ql =

By Lemma B.4, we have Ris = op(1) and Ry9 = op(1). For Ry, it can be written as

1 , , ,
Ro=x 3, (o) —eto) "Plom () — ) + efyg Pro (€ — eim)
9,he[G)?,g#h
2

; T T T 2
+(€19) = e1g) Plomern + efg Pgmerm)” — (efg Popierm) )

R;g,z
1 2
2 T
AL D (X Remem)
g,he[G]?,g#h
R;gs

1
—ax A 3 (X RenXm) (efnPonXm)

9,he[G1?,g#h

o /
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g,he[G]?,g#h
R;g,s
+2x A2x = N (el Py Xin) (X0 Pomemn)
g,he[G]?,9#h
R;;,a
. 1 T T
—axAxg 2 (ePanXm) (el Homne)
9,he[G]2,g#h
R;g;

By using the same argument as in the proof of Lemma B.6, we can show that
R207i = Op(l), 1= 1,...,7,

whence Ryy = op(1). Combining the results above, we have

T-7
T = 0P<1).

This concludes the proof.

C.8 Proof of Lemma B.8

We first introduce some notation. Denote

By = (XT2A2TX) (X 24,04,2T X) (X T2A,27X) 7,

. ) CONT
Q= Z (2[216[9]) (z[Tg]e[g]) ’
g€[G]

where e =Y — Xﬁl, and denote A, = Bl — . In addition, denote

b, = (XT(P- P)X) ' S(XT(P-P)X)"
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2

=2 Y SiQuadm |+ Y (XpQuaén) (XiQuaéia)

ge[G] \ he[G],h#g 9,:he[G]2,g#h

where ¢ =Y — XBQ, and denote Ay = BQ — (. Finally, denote w; = <i>§/2/ <q.>1/2 + ¢§/2> and
Dy = 9%/ <<i>1/2 + 51521)/2>.

We divide the proof into four steps. In the first step, we show that if Assumptions 1-3
hold, then

BB, &y =op(1), and (B, — B)/®)* = Op(1).

In the second step, we show that if Assumptions 1 and 3 hold and TITII/ VK — 0, we

have
(Bo — B’ TI/VEK = 0p(1) and ®ITI/VEK = op(1).
In the third step, we show that if Assumptions 1-3 hold and IT"II/v/K = O(1), then
Bo—B=0p(1) and 1/0* = 0p(1).
In the last step, we show that if Assumptions 1, 2’ and 3 hold, then
Bi—B=0p(1) and 1/0)* = 0p(1).

Consequently, if Assumptions 1-3 hold and II"II/v/K — o, by the results in Steps 1 and

2, we have

L2 2 R
2 /> < (b~ PITIVE
2

(B— BT TI/VK < (W

P2 ?
1 A 217 T
b =t | x (B — B IVE
(@}/2 1 @5”) 2 /
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(b~ )

< "8, TVE + 0p(1) = op(1).

1
If Assumptions 1-3 hold and IT"II/v/K = O(1), then by results in Steps 1 and 3, we have

) =12 2 )
(3 - BPITIVE < (Jﬁ) < (B = BPITTIAVE
1 2

HL/2 2 )
+ | =t X (Bg — ﬁ)ZHTH/\/?
(@}/Q + @;/2)

= (B1 = B)* x Op(1) + &1 x Op(1) = op(1).

If Assumptions 1, 2" and 3 hold and II"II/v/K — oo, by results in Steps 2 and 4, we have

HL/2 2 )
Q"W) < (b= BPITIVE
2

(=B INE < (W

L2 2 R
+ ; X (62 — 6)2HTH/\/E
<¢w+@y>

< %—W@HTH/\/E +op(1) = 0p(1).

1

Therefore, we have established the desired results. Next, we focus on proving results in

Steps 1-4.

Step 1: Assumptions 1-3 hold
We have

By (C.17) and (C.18), we have

xT An TY iXTz LAn LZT)(
ZAnz X (n{ )(,\ln )(rln ) — 1+ o0p(1). (C.20)
IT2A,2TII (EHTZ)(EAn)(EZTH)



In addition, we have

XTzA,2Te (iXTZ)(,\LAn)<\/ﬁZ e
(

VG2 (A GQ) (A (E=TT)
_ II7zA,z"é
VI 24,QA, 2711

where the last equality holds because by Assumptions 1 and 2,

1_ - 1 1 1 1 + 1 1 1 1
Ere) o) o) (o) o) = 2 () Go) o)) = 2
Combining the above results and recalling

O = (ITT 24,2 ' TI) (11T 2A,QA, 2 T (ITT 24,2 "TI) 71,

we have
iof_ MeAeT XTedele o)
VA1 _XTzAnzTX VIITzA, QA 2T A
and
M72A,QA4, 211
Oy = 2t 2o L) =), (C.21)
(IITzA, 2 T1I)* r2

which further imply

B — B = O0p(x/®1) = 0p(1).

Given the consistency of ,@1, we can apply Lemma B.7 to show that o, /Py -2, 1, which
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further implies that

o (B-sp
Dy

o, 0 — Op(1).

Step 2: Assumptions 1 and 3 hold, and HTH/\/E — 0
We have

XT(P - ?)e

S e

and
X' (P-Ple=M"é+V(P—-P)ée+V PyPé+V ' PPyé—V PyPPye,  (C.22)

where we use the fact that Py P = PPy = 0,, since Z = MWZ. For the third term on

the RHS of (C.22), as ¥ > C(II'Il + K) by Lemma B.5, we have
VTPyPé = 0p(1) = 0p(VY)
by Lemma B.3. Following the similar argument, we can show that
VIPPyé =op(vVS) and V' Py PPyé = op(VY).
Then, by (C.22), we have
XT(P—Ple=1"é+ V(P —P)é+op(VE). (C.23)
In addition, we have

X'(P—-P)X =TI"(P - P)I1 + 211"V + V' My (P — P)MyV
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— ' (P-P)I+2l1'V+ V(P —P)V +2V'Py(P - P)V + V' Py(P—P)PyV
—I'(P-P)1+2L1'V+V'(P—-P)V—-2V'PyPV — V' Py PPyV
—I(P—-P)II+2II"V + V(P — P)V + 0p(VX)

— 1" (P — P)IT + Op(VX), (C.24)
where the second last equality is by
VIPyPV =0p(VE) and V' Py PPyV = op(VY)
due to the same argument above, and the last equality holds because
V(ﬂTV>=(XHTH)=CKE)
and
% <\7T(P - P)f/) < C||P - P|% < CK = O(2).

Combining (C.23) and (C.24), we have

B §— XT(P—Ple WU+ VT (P—P)+op(vT)
P XT(P-P)X  O(P-DPI+0p(E)

In addition, we have

by 1+ K

Py = = O( 2
(ITTII)

ey ) =ol1) (©.25)

because as II"I1/v/K — oo, we have II"II — oo; this also implies that

X'(P-P)X _T'(P-P)I+ Op(VY)

7 (P — P)I (P — P)II

=1+ Op(l). (026)
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Therefore, we have

BBl (ﬁTé +VT(P - P)é) /VE + op(1)
V14 Op (VE/|UT(P — P)I)

= OP(1)7
where we use the fact that
[1'é = Op(VII'TI) = Op(VE)

and

This also implies

(B2 — B I/VE = Op(®.I1'TI/VE)
_ 0, <HTH + K HTH>

P VK
1 VK
0o, (\/_E N ﬁ) — op(1).

Given the consistency of Bg, we can apply Lemma B.7 to show that <I>2/ d, -5 1, which

further implies that

I TI/VE = op(1).

Step 3: Assumptions 1 and 3 hold, and II'II/v/K is bounded
Note that II" (P — P)II/v/K is bounded in this case. In addition, let

~ ~ 2 ~ ~ ~ ~
Togp= E[(‘/[;]P[g,h]‘/[hﬁ + (Vi Ploa Vi) (V'[Z]P[h,g]‘/[gﬁ],

9,he[G]?.9#h
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2
T 5 T s T =
( [g]P[g,h]e[h]) + (V[g]P[g,h]@[h]> (V[h]P[h,g] [g])]>

™
I
Nl
>
m
—
82
]
)
1+
>
&=
1

T = T Al = T %
( [g]P[g,h]e[h]) (V[g]P[g,h] [h]) t (V[g]P[g,h]@[hﬂ < 1 ln.g) [g]>],

-
I
=

then by Assumption 3.4 we have 1/C < I'y /K < C,1/C < I'y ;/K < Cand [A[/ /Ty Ty ; <
C < 1. We shall argue along the subsequence where II" (P — P)II/y/K — v € ® and

1 [T

K

v A _ 'y Ty _T

F21 F22

v,

A Ty,

where I' > 0 (in the matrix sense) by I'; /K > 1/C > 0, I'y /K > 1/C > 0 and
[A/K|/\/(Ty 3/ K)(Ty o/ K) < C < 1.

By Assumption 3, we have

F=VT(P—P)V Y 0 [Ty Ty
\/—%VT(P_P)Q 0 o1 Tl

which can be proved by following the same steps as in the proof of Lemma B.10.

In addition, by (C.24), we have

1 _ 1 _ 2
— X' (P-P)X=—I(P-PII+—II'V
VR (P PX = Il (P = Pl T
1 - . 2 . 1 - L
+—V(P-P)W - —V'PyPV — —V Py PPyV
Vi, BBV = GV B PV = eV B Pl
WN(77F11>7

where we use the facts that
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VTRPT = Or (YWE) = opll), and VT RyPRWY = 0p (LK) = 0n(1).

2
\/_F

\/T
This implies
! Op(1) (C.27)
= - P . .
\/%XT(P—P)X
Similarly, by (C.22), we have
! X"(P-P) L ey V(P —P)é
— —Ple=—=II'e + — — P)e
VK VK K
1 - _ 1~ -
¢ VTP Pé ¢ ——VTPPyé - ——V T Py PPyé
1 - _
= —V'(P—P)é+op(l) =0p(1)
K
which further implies
. X'(P-P)e JgX'(P—Pe
B2 =+ (P-DP)X LX'(P Fx o)
EXT(P—P)
Next, we analyze d,. Note that
2
1 — 1 1 T . T .
5= D, Z XQuatfia | + 7 2 <X[g]Q[g,h]€[h]) (X[h]Q[h,g]e[g]>7
ge[G] \ he[G],h#g g,he[G]2,9#h

1 ~
I > XhQuafl)
g€[G] \ he|G],h#g
2
1 - B
=K Z X Qrng€lg
ge[G] \ he[G],h#g
Rax
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2 2

_l_
(==
b
=
L
=
=,
9]
5
|
b
=
O
>
L,
_&‘bz
L,

ZX

g€[G] Gl,h#g ge[G] \ he[

_I_
s
]
[N}
|
]
Q
=
<
=
O
>
Q
)
L,
(]
S

By the fact that II'II/K = o(1), we have
1/C<Y/K<C

for some constant C' € (0, 0), so that we can apply Lemma B.5 to obtain

Ry = K Z E Z X[Z]Q[hy]é[g] +op(1),
9€[G] he[G],h#g
2

1 - ~
K Z K Z V[Z]Q[h,gle[g] +op(1),
9€[G] he[G],h#g

and Ray = op(1). For Ry3, we have

" 1
Rgs = AZ % iz Z Z X Xlg]
g€[G] \ he|G],h#g
R;;,l
. 1 S
—2x Ay x e Z X X[g] Z X[E]Q[k,g]e[g]
9€[G] G|,h#g ke[G],k#g
R;;,z

By Lemma B.5 and the fact that IT'TI/K = o(1), we have



Rygp =7 2, B Y VinQmaVig Z Vi Qg | +or(1)
g¢€[G] he[G],h+#g G kg
It follows that
2
1 T
= Z X Qn.g1€[g]
9€[G] he[G],h#g
2
1 ~ -
- K = Vin Qir.g1€l]
g€[G] he[G],h#g
. 2
A2 - ~
+ fQ E V[Z]Q[h g] V(9]
g9€[G] he[G],h#g
27, - - . )
~x 2L E Vi Qina1 Vi) 2 Vi Qegi€lgr |+ op(1),
g€[G] he[G],h#g ke[G,k#g

since Ay = Op(1). For the second term on the RHS of (C.28), we have

1 Spneeraen (X Quaem) (X Q)
K - N (s )
= Yynciapgen (X Qo) (X Qi)

- _
~~

Ras
1 Zgnelcrgrn (X[T,]Q[g,h]é[hﬁ (X[E]Q[h,g]é[g])
K ~ ~
= 2y helGP2 g2 (XLT,]Q[g,h]@[h]) <X§L]Q[h,g]€[g])

i

Ras

\ ~———
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By Lemma B.6 and the fact that IT'TI/K = o(1), we have

1 ~ 5 ~ -
Ry=— » E <V[3]Q[g,h]€[h]> (V[Z]Q[h,g]e[gﬁ +op(1),
g,he[G]?,9#h

and Ros = op(1). For Ryg, we have

o 1 ~ 5
Ry = A? x e Z (X[Tg]Q[g,h]X[h]> (X[Z]Q[h,g]X[gO

" 1 ~ >
—2xAxo ) (X[;]Q[g,h]X[hO (X[Z]Q[h,g]e[g]) :

9:he[G]?.9#h

o >
-~

Rag,2

By Lemma B.6 and the fact that TITITI/K = o(1), we have

Ros 1 =

and

It follows that

1 - )
K (X[g]Q[g h]e[h]> (X[h]Q[h g]e[g]>
9,he[G)?,g#h
1 ~ i ~
K K (V[g]Q[g h]e[h]) < [Z]Q[hg]e[g])
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Az : N .
% 2 E (VipQuaVint ) (Vi Quran Vi)

9,he[G]?,g#h

24, : N )
- > E (V[;]Q[g,h] [h]) (V[Z]Q[h,g]e[g]) +op(1). (C.30)
9,he[G)?,g#h

since Ay = Op(1). Combining (C.28)—(C.30), we obtain that

e A3 T - )2 A % T %
=722 X E (V[h]Q[h,g]V[g]> + ) E (V[g]Q[g,h] [h]) (V[h]Q[h,g]V[gﬁ
g,he[G]2,g#h g,he[G]2,g#h
1 T - \? T ~ T ~
= 2 E (V[h]Q[h,g]e[g]> + ), E (V[g]Q[g,h]e[hJ> (V[h]Q[h,gJ%J)
9,he[G]?,g#h 9,he[G)?,g#h

2A2 ‘/ (7 [/ e
K >, E (V[Z]Q[h,g] [g]) <V[Z]Q[hﬁgle[g])

9,he[G1?,g#h

_p? E<‘7[;]Q[g’h] ~[hl) (‘%Z]Q[h,g]é[g]) +op(1)

g,he[G)2,g#h
- Pe(e-v) - 2 (V@-ar) (V- o)
FLE(TTQ - Q%) +or()

FE(VT(@- Q) = 2E(VT(P~P)V) +o(1) =Ty + ()
K - K — 111 9
FE(VT(Q-Qe) = E(VT(P—P)E) +o(1) = o + o{1)
K € = K (& 0 = 199 o s
g (VT(Q - Q)V) (vT(Q - Q)é) — %E (fﬂ(p . P)v) ( T(p- P)é) +0(1) = Tz + o(1).
Combining the above results, we have
%i = Ay — 2A5T 15 4 Tas + 0p(1). (C.31)
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It follows that

(LXT(P— P)ey (LLXT(P— P)e)
TLxpopxy Ao
VE VE
1
+ (%XT(P — P)X)Q X FQQ + 0p(1>
K
> @27

where the second equality is by (C.27) and (C.31), and ®, is defined as

2
T " 20y & 1
(17,7 +7)* (7,5 +7)? (55 + )2
- (oo +7)* (77\27,;11 =205y v+ V2 + My v + 7)2F22>
T
NV e ' T Ny e
N+ o1 T Ny v+
B (17,57 + ) ’
with
N v d N 0 Iy F12
7]‘7 é 0 P21 ng
Note that
-
e 'y T —Nyz

Ny +7 Por Too | \npyp +7

and the equality holds if and only if 7y, = 0 and 7y + v = 0, which has probability

zero since 7y . has a non-degenerate normal distribution and similarly for 7y . In addition,
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the denominator of ®, is positive with probability one. Therefore, we have ®, > 0 with

probability one, which implies that
1/$Y? = 0p(1).
Step 4: Assumptions 1, 2’ and 3 hold

By Assumptions 2'.1 and 2.2, we can argue along the subsequence where 2 'II/\/n — 7 €

d
RE,

SRS

Z (Z[Tg]H[g]) (Z[Tg]H[g])T — QM >0,
9€[G]

in the matrix sense. In addition, note that since Assumption 2.1 holds, A,,/A, has eigenvalues
bounded and bounded away from zero, where )\, = Anax(A,). Therefore, without loss of
generality, we assume that A,/\, — A for some non-random positive definite matrix A
with eigenvalues bounded and bounded away from zero (otherwise we argue along a further
subsequence).

By Assumption 2/, we have

1T é,é EAY
N o, Qo Qf |
o4 Qve Qv

which can be proved by following the same steps as in the proof of Lemma B.10 (see also

Hansen and Lee (2019) and Djogbenou, MacKinnon, and Nielsen (2019)). This also implies

7



that

We have
A, = XTz{lnzTe _ (%ﬁXTZ)(i%n)(%ZTé)
XTzA,2TX (\/LEXTZ)(iAn)(\/LﬁzTX)
and

We also have

1 1
- < —,
(LXTo)(EANLTX) &

where &, is the first element, of (A,/A,)"2(z7 X /y/n), and note that &, ~~ & where ¢ has a

non-degenerate normal distribution. This implies that

1
(X7 2) (A (527 X)

= Op(1),

whence A; = Op(1).

Next, we analyze ®;. Note that
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as in the proof of Lemma B.7, where Qs just ) with ﬁ = 51. We have

I |
S0 =0 = A2x = 3 (2 Xi) (X 21a1)
n n
N 9€[G] y
Rus
. 1 T
— A x E (Z[g]X[Q])e[g]Z[g]
. 9€[G] .
Ris
. 1
— Ay x - Z (2g1100) (X[ 2101)
N gE[G] _
Rig

By using the same argument as in the proof of Lemma B.7, we have

=
|

<
n
—_
Q
Q
n
—
Q
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and

=
|

Il
SIl— 3= 3=
~—~
I
S
D
s
SN—
—~
<
s
[N
s
S—
+
QS
]
—~~
—
S~—

I
o
<
_l’_
Q
]
=

We thus obtain
1~ . R e =
-0 = A%QE’H + AfQZ’V — AlQZ’e — AIQ?V + Q9 + op(1),
n

since Ay = Op(1).

Combining the above results, we have

b, - ((%ﬁx%xx—iﬁn)(%zw))_? (XA GG =)
C(EOGANGETA) a1
(GXTAEANFTX)) (Gt A )

(GXDEAED) 1 1 o
- 7% (_XTZ)(TAR)QZ’V(TAn)(_ZTX>
+(<%ﬁXTz><¢An><%ﬁzTX>) ( S Mom )
LXT, iAn L.Te 3
(LX) (A (L2TX))
(FXDEANGETD) (1 1 1
- " 5 (X (AN (= A) (=27 X)
(HXTGEA(HTX)) (5575, G 0)
1 1 T L. €,e iA LZT op
+ <<LXT2)(tAn)(%zTX))2 X ((_nX Z)(')“\_nAn)Qz (S\nAn)(\/ﬁ X))-i- (1),



and thus &, «~ &y, by the continuous mapping theorem, where

" <<cv((?§8;£€i)i»4 x (G + m) TAQIA(C + 7))
((Cv((f;)r W)(Tgici)w)) X ((Cv ) TAY YA + )
i <<<V(fv7r>+ W)JA@) 5 (G 4 T AaT A + )
. <<<V(<+C;>+TZ)( ) P ((Cv ) TAQEY A + 7 >
" (¢ + w)T,lq(gV T (¢ +m) TAQECA(G + 7))

1
& g

+((Gr +m7AG)" x (G +m) ALV AGy + 7))

- Cor +mTAG) x (¢ +m) TAQETA(G + 7))
((
— ((Gr +m)TAG) x (G +m) A +m) x (G +m)TAQT A + )
- ((
((

G+ M) TAG) x (G +m) AWy +m) x (G +m)TAQET A(Gy + )

(G +m) AWy +m)" x (G +m)TAQETA(G + ) |

(G +m)TAG)” x (G + m)TAQIIA(G + 7))
(G +m)TAGy + )

— (G +m 7AWy + ) (Al +m) | [ QiF QY
((Cf/ + W)TAC?:) (A(Cy + 7)) Qg/,é Qg,f/

) ( (G + ™Ay +m) (A + w)))

(G +m)TAG) (A(¢y + )
(G +m)TA(G + )

with
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Finally, we note that

(G +m)TAG)” x (G +m)TAQTTA(C + 7)) = 0,

and
— (G +m)TAC +m) (AlGy +7) | [ Q2f Q&Y
(G +m)TAG) (AGy +m) ave iy

A\
o

— ((¢p +m)TA(Gy + 7)) (A(Gp + 7))
((¢p +m)TAG) (A(Gy + )

X

and the equalities hold if and only if

(v + ™) Ay + m) (A(Gy + 7)) =0,

((¢p + m)TAG) (A(¢p + 7)) = 0.

Given that A is positive definite, the above two equalities hold if and only if (; + 7 = 0,
which has probability zero since (y has a non-degenerate normal distribution. In addition,

the denominator of ®; is positive with probability one, which implies
1/®1% = Op(1).
This concludes the proof. O

C.9 Proof of Lemma B.9

By Lemma B.8, we have § 2 3 and (3 — 8)*I'II/vVK = op(1).
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For T(5,), by Lemma B.7,

\
= 1,
\
which, by (C.20), implies that
oy
1
We have
X7 A T4 XT A T
( S ) ( kad e)+a15+ dn — a 5

T(8) - _ 2
Vi g

XT2A 2TX)V LY XTLA T
X 2dne X)X 242 9 454 o),

In addition, we have

(XT2A,2TX) " (XTzA4,2Te)  (XTz4,27X)7! y (XTzA,27e)

o, \/(XTZAnZTX)_2 Vi
U (XTzA,z7e)
=A== X ———F—= x (1 +op(1
(IITzA,z"€)
- 1+ op(1
vireaon,m (o)
(IITzA,z"€)
- +op(1),
VIITzA,QA,2TI1 or(1)
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whence
T(6o) = L Z I’I[T]é[ 1+ a0 + op(1)
g9 :
VU P!

For LM(f,), if I'II/v/K — oo, we have

LM(ﬁ()) = % + CLQ(S + (dn(XT(F)\/g_ P)X> - CLQ) )
_ XT(P—P)e d,
= T+a25+ (E X (1+OP(1))—CL2>(5
T _
= % + a6 + op(1),

where the second equality holds because by Lemma B.7,

X

=2,

~

x

which, by (C.26), implies that

3 by

Oy(XT(P— P)X)?  ®p(XT(P — P)X)?

Alternatively, if II'TI/v/K = O(1), we have

LM(ﬁO): \/g + \/g
_ XT(]\D/%P)e T op(1),

where we use the fact that

X' (P-P)X X' (P-P)X ¥ T'(P-P)l+0p(W)
N S VE
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by (C.24), I'TI/v/K = O(1), and

VO,

L PP o o,

Assumption 4 implies that as = lim,,_, d,,/+/P2 = 0 in this case. In either case, we obtain

X(P-P
LM(ﬁo) = # + CL25 + OP(]_).
N
In addition, we have
XT(P—P)e X 01 fer. oo o
T_\/;X\/—i@eﬂf(P—P)e+VPWPe+VPPWe—VPWPPWe>
S 1 /- - _
== x —= (ITTé+ V(P - P)é +0p(VY)),
VE o (0 VTP = P+ 0n(V))
_ L <ﬂTé +VT(P - P)é> +op(1)
VvV ’

where the second equality holds by ¥ > C(II'II + K) — o as shown in Lemmas B.3 and

B.5, and the last equality holds by Lemma B.7. It follows that

LM(BO) = \/_i Z H&]é[g] + Z V[—gr]P[g’h]é[h] + a2(5 + Op(l).
g€[G] g,he[G]%,9#h

For AR, we have

e'(P—Ple—é" (P~ P)é=¢é PyPé+é PPyé—¢é' Py PPyé = 0p(1)

by Lemma B.3, and T > CK by (C.19). This implies that

Nes > clgPemem = 2, EgPlanép | = Op(K™) = op(1).

g:he[G]?,g#h
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We also have

e'(P=Pé—e" (P-Ple=(B-B*X"(P-P)X —2(—B)X"(P— P
— (B B)* (T (P = P)IT+ Op(VE))

23— ) (e + V(P - P)é + 0p(V3)
= (B — B3)’Op(II'IL + V¥) + (B — B)Op(VE)

= ((B=BPI+ (3= BVE + (B = BIVE)) x Op(1)

by (C.22) and (C.24), II'Il = O(VK), and & = O(II'I + K) = O(K). Then by g 2 3

and (3 — B)2II'I/VK = op(1), we have

1 R .
— er 1P, mérn — er 1P, me
Z [g]* Tg,h1€[R] 2 [g]* Tg:h]C[R]

g,he[G]2,9#h g,he[G]?
2 A\2TTT . .
- (% F(B-B2+ (h- ﬁ)) < Op(1)

= Op(l).

It follows that, by Lemma B.7, we have

s
=
[

X

4= 4l

~T A
> el Pamém

9,he[G1?,g7#h

AT A T
( Z 6[sJ]P[ngle[h] - Z e[g]P[ngle[h])
g,he[

G]2,9#h 9,he[G]2,9#h

X

9,he[G]2,9#h g,he[G]2,g#h

X

+
3959 S S
X
5 5
1
_®
L,
v
o
=
o
=
|
1
[Q°}
§—|
G'"U
=
’_C?I
=

"f_
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This concludes the proof. O

C.10 Proof of Lemma B.10

Note that by Assumption 1.2, we have G — o as n — o0. The proof follows the same steps
as in Chao et al. (2012) to check the conditions for the martingale central limit theorem; see,

for example, Hall and Heyde (1980).
Step 1: Construct martingale difference array. Let

1 0T 5 T s
NG Z i1 + Z Vig1Plg.n1€1n)
g€[G]

P1n = COV ]
g,he[G]2,g#h
4T o AT
(H[gle[g]> (H[g]%]ﬂ )

1 ,
Ly
[9]“l
\IJQE[G]
1
PRI
v 9€[G]

such that p; = lim,, . p1,, and

1 AT o =T - 1 T .
Pon = COV \/_f Z i€ + Z Vig1Flo.m€n) T Clg1 g mEMn)
g€[G] g,he[G]2,9#h g,he[G]2,g#h
2 =T - T -
NG >, E [(V[g]P [mh]e[h]) (e[g]P[g,hle[h])] :
g,he[G]2,9#h

such that p, = lim,, .4 p2,, and note that

1 s 1 - -
cov NGT Z H[Tg]e[gb\/—f el Plomép | = 0.
9€[G]

9,he[G1?,g7#h

The assumptions for p; and ps in Theorem 4.1 ensure that

-1

1 Pin 0
Pin 1 P2n
0 Pan 1
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exists for all n large enough, and by the Slutsky theorem, the result would follow if

—1/2
1 Pin 0 \f de HT] ~[ ]
pin 1 pon \/Lg (de[a] [g]e[g] + Zg,he[G]Q,g#h [;]P [g,h]é[h]>
0 p2, 1 \/L? Zg,he[G]Q,g;ﬁh éE;;] Prgmeén

0 100
wo> NT1ol,]0 1 0

0 001
Let v = (v1,v2,v3)" with [jv], =1, and
~1/2
1 Pin 0
c= (Cl, Co, Cg)T =1 pin 1 P2an (Uly V2, U3)T7
0 P2n 1

and note that |c||, is bounded for all n large enough. By Cramer-Wald device, it suffices to

show that
75 2getc) Ui el
T ~ ~ -
| (Z et Lol + Lgnefcpe grn [;]P[g,hle[h]) > N0, 1)
T DgnelGlz.geh Clg Plan€in
Denote
€1 4T < C2 AT = yai ~
M, = N7 g e1q) + NG 2@+ Y VigPleméng
g€[G] 9€[G] 9,he[G]2,g#h
C3 ~ -
tOr > & Paném
g,he[G]2,9
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and note that M, can be written as sum of martingale difference array. To see this, define

Cl o+ _ ~
Mg = \/—%HT TH[T
and for g > 2 define
_ G a7 C2 AT - C2 <~T ~ ~ )
M, —=II; €15 + —=I1L; 16151 + —= VP6+VP6
o = g + g iton + 7 24 (Vi + Vi Pt
C3 Z (~T ~ ~
—= 2 g Plasfrm + € Pngfia) -
\/Th<g !
o N\T
and we have M, Z M. Further define ey = (é&], V[;]) and the sequence of o-

fields Fye = {epy, - - ,E[g]} such that Fy_1)¢ < Fye with Foe = {J,Q}. It is clear that

{Myc}S_, is a sequence of martingale difference array with respect to {Fya}_,. Note that

S E(MZ;) = E(M2) = 1
g€[G]

by the property of martingale difference array.

In order to show

> My~ N(0,1),

g€[G]

it remains to check the Lindeberg’s condition

D1 E (Ml u,esq) — 0
9€([G]

for every ¢ > 0, and the stability condition

2 E (Mgl Fyne) == D) E(M).

9€lG] g€[G]
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Step 2: Check Lindeberg’s condition. It suffices to show that

249
M EME) -0
9€[G]

for some 0 > 0, and we will verify that for § = 2 in what follows. We have

C = \4 C . \* O 5
ZE(M;G) < @ Z E(H&]e[g]) + ﬁ 2 E( E;]e[g]> +§ Z E (Z V[;—]P

geG g€[G] g€[G] g9€[G]

4 4
C g T ~ C ~T ~
e LB (2 V[h]P[h,g]e[g]> te L E (Z 6[h]P[h,g]€[g]> :
9¢[G] 9¢[G]

h<g

h<g

For the first term, we have

1 /T ~ 4
7 X E(“[g]e[g])

9€[G]
C e \?
s o2 Z (H[Q]H[Q]>
9€[G]

P 2.,
Cmaxi<geq g | 17T

2\ 2
(171

= o(1).

Here we use the fact that ﬁ[g] = z[g1Anz "I, so that

2

. .2
HaXisg<c HH[g] H Ha¥<g<c HH[Q] HQ /n

2 _
711 T 2A,(27T2/n)A,2TII
C'max;<y<c HTzAn(zE;]z[g]/n)AnzTH
HAnZTHHg
2

C'maxi<y<a g X MaXe, ge[G] |2ig

<

~

n

=o(1).
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For the second term, we have

as K — .

1 NN
55 L E (%J%})

g€[G]
A7 1
222< i)

C maX1<g<G HH[Q] HQ HTﬂ

<

For the third term, we have

= 2 (T

h<g

where

and

1
N2

p

h,k<

o(1)

9,

(IITTI + K)?

5 3 LB ([ >4

G] h<g

Z 2 A (Pt Plo)

G| h<g

Z Z trace ])

G| h<g

o(1)

h#k

~ 2 ~ 2
E (&l PinaVia) (e PienVio)
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N

N
Al "o Ha

N

I

Amax (Pign)Prng)) Amax (Prg k) Pik.g))

[

2

1 hok<g,h#k

Z trace (Pyg,n Fin.g1) trace (Pgx Pir.g)

1 hok<g,h+k

Q

g€l

[

Q

g€l

(P[g,h] P[hﬁg])

>
M
ot
=
oY)
(@)
@D

Q
m
—
Q

)
—

—_
~—

The last two terms can be handled similarly.

Step 3: Check stability condition. The variance and conditional variance can be written

as

- .67 2c1¢9 - 8,679 3 8,675
E (Mig) = E (M| Foc) = 3 iy T + EHE]QI’ gy + 52 Ty,

and for g > 2,

4c2 & &
+ T3 2 trace (Qh’ P[h,g]Qg’ P[gﬁ]) +

h<g

Z trace <Qi’éP[h,g]QZ’éP[gvh]> +

h<g

462 C3

VET

and

E (Mjo|Fg-1a) =

2c3
5 Z trace
h<g

&V &,V
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2c109 ~ T 5er 4cyics - Vet
+ —\/ﬁ }; V[h]P[h g]QZeH[g] + \/ﬁ : e[h]P[h,g]Qg EH[g]
g <g
G T op Qlip s G T P, Q%P 1V
+ Z €n) L Th.g] g l9.k1€[K] T D [(h] L Th.gleg Lg,k] VK]
h,k<g h,k<g
4—C§25TP QePéJrQ—CgZeTP QVep v
T [h]4 Thigl®%g +{g,k]€[k] S [h]* Thogl®4g  L]g.k] VK]
h,k<g h,k<g
deocs T . deoes T e ~
Vi Q% P, 1€ + e Py 182 C Py 1€
\/ﬁ h;g [r]1 [h.g]*%g +1g,k]C[k] \/ﬂ . [A]4 Thgl>fg L gk]C[K]
We thus obtain
E (Mg Fg-ne) — E (M)
.
cic ~ % é cic éé 4c c ~ ~,é ]
_ 3/% Zh<g e[Th] P[h,g]Q‘g/’ f/% Zh<g ]Qg \/ﬁ Zh<g T ]Q;/ Mg
2c1c ~ % é 2c c é,e 4c c V.e1
AL eﬁl] Ping) ng I + 232 Zh<g ]Qg + Ay €l Pna 2y Iy

N

[Zh kg € hg]Q;/’VP[g K1€[k] Zh<g trace (Q “Plhg] Q Pg h])]
[Zh e Vil Pina 5 Pl Vil — Ly trace (47 P %Py |

4c? ~ zé _ &g i
L) +5 [ZMKQ G[Th]P[h,g]Qg’ Prg e — Z,Kg trace (Qh P12 P[g’h]>
+f/c% [Zh,k<g V[Z] P g1 Q5 Py €ir) — D trace (

= V. ¢ A &
\ +f/§ [Zh,k<g €E;l]P[h,g]Q;/’ Prgr1€mr — Z,Kg trace (Qh P g Q25 Prg.n) ]J

. 1) 2
= Y 4 m),

and it suffices to show that

9€[G]
MP = MY =op(1)
9€[G]

Consider first M,gl), we shall only compute the sum of the first term in MY ¢ as the
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other terms can be handled similarly. Recall that P is the block lower triangular matrix

corresponding to P — P, we have

261 Co

E| — 2 Z éE;Z]P[hﬂ]Qg’éﬂ[g] = 0,
VW ge[G] h<g
and
2c1¢9 =T V.er 40%03 T AT
\Y 6[h]P[h Q]Qg H[g] - Uy E P QVE )

(IITI) K
Chom ~15T)
<
K
clpe
< F
K

where we use Lemma B.2 in the last equality.
Now consider ]\47(?)7 we shall only compute the sum of the first term in M éé), as the other

terms can be handled similarly. We have

c . . 5 3 ia o
E(< ), [Z €0 Pina1 2y Prgamep — ) trace (Qh’ Pirg€y ’VP[g,h]>] =0,

g€[G] Lhk<g h<g

and

c? - ~
Vs > VinPnar %" Pon Vi — ) trace <Qh Ping$2g" g h])]
9€[G] Lh,k<g h<g
2
C . - v
<wE | 2 <V[h]P[hg]Qg Plg ) Vin) — trace (Qh Pin.g1$2g" g h]))



gelG] h,k<g,h#k

For the first term, we have

N
) -
>
m
Q
=
7
<
=
g
v
B
L,
)
s}
A
e}
=
N~ —
Q
=
N~
[N}

g>h
1 . .
<55 2 Mo <<PTQ,;P> )
he[G] (k]
C . .
< 2 trace ((PTQéP> )
he[G] L.kl
C
< ﬁtrace (PTQ P)
C <o~
< ﬁtrace (P P)

= o(1),

where we use the fact that

trace (PTP) = |[P|[} < ||PIl} = O(K).

For the second term, we have

2

1 o
S Z Z V[ Phg]Qg, PrgiVik)
G hok<g,h#k

1 [/ é,e  /
-SE( 2 Vil < > Pnay P[g,k]> Vin

h.ke[G]2,h#k g>hvk
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1 N . )
= 5ok > Vil (Z Ping1$2y P[g,k]> Vin

h,ke[G]?,h<k g>k

h.,ke[G]2,h>k g>h

£ 3. o))

h,ke[G]2,h#k g>hvk

¢ €,e €,e
w5 D, trace <( >, Prah [g,k]> < Plig 25" 1) [gﬁ]))
h,ke[G]2, h£k g>hvk g>hvk
trace ((PT0:P)  (PT0:P)
22 N kz] e ( [h.k] [k,h]

C o
ytrace (PTQ,;PPTQ,;P>

2
+ o Vi (2 B [h,gJQi’éP[g,k]> W])

N

N

//\

N

where we use Lemma B.2 in the last equality. This concludes the proof. O

C.11 Proof of Lemma B.11

For the first result, for j € [d.], let v; be the d,-dimensional unit vector with j-th element

one and other elements zero, and denote z; = Q7Y 2v;, then

22y = 0] (/n) (T2 /n)(@/n) 20y = O(1),

71 Zra = Q/n)~ V2 Q/n)"v; = o(1).
max 2]y, % ) = masxv] (©/m)™V2(zy210/m) (@) 0y = o(1)
It follows that
1/2 1/2
1 =T~ ST~ =T~ )2 1 AT = )2
5 2 E|Ew) (Tew) || < | 2 E ) s 2 E(Mea) | =00),
9¢[G] 9¢[G] 9elG]
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and as d, is fixed, we obtain

1 RN 1 N
ol > | Glae) (Xie) | = Voud > | Gl (Myéwn) |

9€[G] g€[G]
1 N
+ =072 3 | (i) (Viéwa ) |
[g]€l9] [9]¢19]
VE 9€[G]

e pere)
1 T AT T = T =
=5 (i) (M) = 2 E (5 18a) (M%)
el e
Rar
1 T ST i ST
o= | 2 Eem) (Mem) = X Eew) (Tge)
9€[G] 9€[G]
Ras
1 ST 4 AT 4 T T
| 2 Gladn) (Mgét) = 2 e (Migewn)
9€[G] 9€[G]
Ra
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For Rs7, it has mean zero and

g€[G] g€[G]
1 IR A 2
ST E <(Zj,[g]€[g]) (H[g]e[g]>>
9€[G]
2
Cmaxicy<a || 7 %
<
(ITTII + K)
= o(1)
For Rayg, we have
Ras = 2l WiaYe) (1L Wrad
5= s 2 (FgWiade) (i Wise
. 9€[G]
Ros:
! LW 1] é
NG (%10 Wiae) ( [g]e[g])
o eElel )
R;;z
1 —T = ﬂT W A~
NS (Zjﬁ[g]e[gl) [91"V1g) Ve )>
9€[G] .

-

where
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whence Rog = op(1). For Ryg, we have

~ 1 R
2 =T T
By = A% x o= > (i Xtw) (11 X0)
. 9€[G] )
R;;,l
~ 1 R
—Ax =2, (FHnXu) (H[Tg]e[g]>
\/EQG[G]
R;g,z
— A X L (ZT[ 1€1 ]) <ﬂ[T]6[ ]>
119 g g g )
\/EQG[G]
R;;,s
where A = 0p(1) and
,, 1 .
[Ra0.1] < [ ]ZjT,[g]Zj,[g]X[Z]X[g] x \/g [ ]H[Tg]H[g]X[E]X[g] = Op(1),
gelG ge|G
- 1 N
| Raga| < 2} 1017101 X [ X1g1 ¥ \/ 5 2 Higlligefgera = Or(1),
g€[G] 9€[G]
— [
| Rag 3| < ;]Zl[g]zj,[g]e[z,]@[g] a5 ;]H[U,]H[g]@&]@[g] = 0p(1),
gelG ge|G

since maxge[gy E (X[Tg]X[g]> = O(1) and maxgeg E (e&]e[go = O(1) by Lemma B.1. It
follows that Rog = op(1).

For (C.34), the left-hand side can be written as

9€[G]
A 5T T A =T o T
5 CR) (V[g]X[g]) A DI CHAR) (V[g]e[g])
9€[G] g€[G]
A =T T 1 =T T
BN (Zia€ta) (V[g]X[g]) N 2 (Eerm) (V[g]e[g])
9€[G] 9€[G]

Here we only show that the last term is op(1), which is most difficult since it does not involve
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fjfgqm(?hﬂ6M><vgfw] :iiggq@(?ﬁﬂ@ﬂ)(ﬂﬁﬁﬂ)
. - . — ’
- 75 2 Gy ()
. ~— j

Note that

Therefore, we have

“ 2
(Vi) <
9€[G] ge[G]

M| =

M| Q

Q
)

—_
Q

he[G]

he[G]
he[G]

vdl
2 Vi
he[G]
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by Lemma B.4 and the facts that

_ 1 ~ ~ )2
Z Z V P PwingCle | = Sl Z E (V[Z]P[h,h]PW,[hﬂ]e[g])
€[G] he[G g,he[G]?

M |

C'trace (PWP2PW)

and

2

(€G]

Vi | 22 Pwinsr Pt Pweg) | et
ke[G]

C’trace PWPPWPPW)
by

1 N
Vin Z Py th ) Pl k) Pov k.91 | €1g]
96[
G

<

= o(1).
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This implies

2
Rl < e [Wigel, x /2 \/ Vi) = on(D).

In addition, we have

T¢)2
[Raoal < mae [Wigiel, < 2( ) > \/m = op(1),

VTQ2V
|R304| max HW %HQ \/7 g

It follows that

R30 = R301 + op(1),

and for Rs 1, note that similar to the proof above, we also have

1 -_— ~ ~
Rur= 2= ), (Hfw) (VoaPinaiéia)) + or(1),

where
oy = T (Vi Pragié 0
ool (i) (Vi Anaréia) | = 0,
9,he[G]2g#h
and
1 T = VT P ~
MW (% [g]e[g])( [h] [hg]e[]>
9,he[G]2g#h
2
1]E =T = VT P ~
-5 (2T ét) (Vil Ponsréia
9,he[G]?g#h
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N
M Q

&=
N
i

=,
—
™
)
™
S
|
)
Q M
™
~—
)
&
=

+
M Q

=
N
—
2
™
™
Sav
Q
=
<
=

I\
M Q

2D, trace (B Pag) + —
g,hE[G]z.g#h

- 55 >, (W Paném) (el Paném)

1
== 2 (Vo Plamém) () Poném)
m g,he[G]?,g#h ? !

vau ~ ~T ~
o 2 E <‘/[9] P[g7h]€[h]> (e[g]P[gvh]e[h]>
g,he[G]2,g#n

The first term on the RHS of (C.35) can be written as

1 o A
Nisis > (T Pymérm) (6 Pamén)

9,he[G)?.97h
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1
= — (I} Prg mi€ny) (8P
ST [g]1 [g,h]C[R] [g]* [9:h]
X 9,he[G]2,9#h
Rt
1

t = > (W Pamem) (efy Ponem) — (1T Prg.mern) (g Pronérm)
X1 g,he[G]2,g#h o o g,he[GZ]?,gyéh Y v
oo
1
+ —== (Il Pro.mérm) (8fg Pomérm) — (Mg Pr.merny) (efg) Prg.mern)
VT g’he[GZ]Z’g#h 9= 19 91~ 19 g’he[GZ];’gih [g]" L9 [g]* [g
Ros

By using the same argument as in the proof of Lemma B.6, we can show that R3; = op(1)

and Rsy = op(1). For R33, we have

Ry — —A x — (Mg Plo.a X)) (X5 Plar Xpn)
S/ﬂ g,he[G]2,g#h iy .
+A? % \\/;Tgvhe[;m#h (HE;];{:;[M) (Xp P [g,th[hli
+ A2 x y%g’he[;F’g#h (H[g]}:[:]X[h]) (e Pl th[hli
e \\/;T 9.he[G]2 g#h (H&];%;h]X[h]) (X[E]P[gvh]e[h])
— A x ?/;Tg,he[c]2,g¢h (H[g];i mXpn) (e Pl h]e[h])J
— A x \\/;Tme[ap » (H[ggih]e[h]) (X1 Pl hle[h])J
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T T
SAx > (M Pymem) (efy Plon Xm),
g,he[G]2,9#h
R;gj

and by using a similar argument as in the proof of Lemma B.6, we can show that

Ry = Op(1), i=1,....7,

which implies that Rs3 = op(1).

The second term on the RHS of (C.35) can be written as

\

1 T 5 AT 5 5T < T <
Ayl 2 VwPuntm) ClgPentm) = ), B (Vi P ) (EPlomépa)
g,he[G)2,g#h g,he[G]2,g#h
1 5T < T < 5T < T <
NG 2 <V[g]P[g,h]e[h]) (ClgPomepn) — ), E (V[g]P [g,h]e[h]> (®o1 Plomern)
9,he[G]?,g#h 9,he[G]2,g#h
Raa
1 N N i
t 5 (VinPlomen) CelgPomesn) = Y (ViPamém ) (FPlosmo)
9,he[G]2,9#h 9,he[G]2,9#h
Ras
1 o A
* v D1 (Vg Pemém) (5 Pamém) — >, (VigPlemem) (el Pomem) |-
g,he[G2,9#h g,he[G]2,9#h
R

By using the same argument as in the proof of Lemma B.6, we can show that R34 = op(1)
and Rs; = op(1). In addition, we can show that Rss = op(1) as in the proof for Rz3. This

concludes the proof. n
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C.12 Proof of Lemma B.12

If Assumptions 14 hold, then by Lemma B.8, we have B 2, 3. Consider first p;. It suffices

to show that py — p1, = op(1), and we note that p; can be written as

s 1) i)
\/ﬁ Z [( zA zTX E] []) (Xg]]é[g])]
1A = XTZAn Z [(Z[I;]é[g]) <X[E]é[g]>]

[ 23 ge[G]
NI L yTagn
Y A/ XT2A,QA4,:TX

. 1 %
% O-1201/2 \/_EQ_I/Q Z [(Z[Tg]é[g]) (X[;]é[g]ﬂ :
9€[G]

By Lemma B.7, we have

b))
\/g =1+ Op(l),

971/291/2 = [dz + 0p(1),

and by (C.17) and (C.18) we have

1

— XTzfanl/Q
VXTZA,QA, 2 TX

_ N — (X7 2/ra)(An/A0) (/)2
A (XT2/r) (/A0 (/) (An/A0) (2T X 1)
1

— T2 ) (An /2 (Q/n)Y? + op
T A R A Gy 2/ A 2a)(0/n) 5+ or(1)

_ 1 T 1/2
- \/HTzAnQAnzTHH 2zA, 7% 4+ op(1).
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Further recall that

1 o o
= o5 ), E [(Hﬁje[gﬁ (H[Tg]e[g])]
9€[G]

1 1 .
_ M7 24, Q2 x —Q 12 E[ 26 (HT g )] .
VIITzA,QA, 2T NG g;G] (#08101) (e

The consistency of p; then follows by (C.32) and Lemma B.11.

Next, consider py. It suffices to show that py — pa, = op(1), we have

2

pr—pm=—=| O, (X Pomém) (e Planérm)
XY g,he[G]2,9#h
=T - ~T -
- ) E (V[g]P[g,h]e[hJ> (Erg1 Plo.méin)
9,he[G]2,9#h

ST 9
+ (\/ = 1) x| = (Xi1 Promern) (el Proméin)
ET ET g,he[G’]279¢h

The consistency of py then follows by Lemmas B.7 and B.11.

Lastly, consider &; and dao. If Assumptions 1-3 hold with HTH/\/? — o0, then by

(C.20), (C.26) and Lemma B.7, we have ®;/®; —2> 1 and ®,/®y > 1. Therefore, if the

assumptions for d,, in Assumption 4 hold, then by the continuous mapping theorem, we have

&1 2> aq and dy 2> . Alternatively, if Assumption 1-3 hold with IITII/v/K = O(1), we

have as = 0, so that ay = 0 and a7 = 1. By Lemma B.7, we have 2/2 2, 1, and note that

E/I’f/é — 1 since II"TI/K — 0. With I“~/7é/K — I’y > 0, we can show that (f)g v Oy for

some random variable ®, such that ®, > 0 with probability one, as in the proof of Step 3

of Lemma B.8. Combining this with the fact that ®; 2 0 by (C.20) and Lemma B.7, we

have Gy - 0 and &3 — 1, by the continuous mapping theorem. This concludes the proof.

]
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D Proofs of Main Results

D.1 Proof of Proposition 3.1

The proof follows exactly the same lines as in the proof of Lemma 2.2. in Lim et al. (2024)

and is thus omitted. O

D.2 Proof of Theorem 4.1

The result follows from Lemma B.9, Lemma B.10 and the Slutsky theorem. O]

D.3 Proof of Theorem 4.2

Consider the set M’ of data generating processes m that satisfy the weak convergence result
(3.5) pointwise for all § € R. It is straightforward to see that M < M’. As a result, the test

class € under consideration is a subset of an augmented class € of ¢, satisfying that

lim E[¢,] <a forallme M’ 6 =0, (D.1)
n—0o0
liminfE[¢,] > a forallme M’ § +# 0. (D.2)
n—o0

We also note that the oracle version of the combination test, ¢2 in (3.6), can be understood
as taking the weak convergence result (3.5) as the starting point and is simply the UMPU
test in the limiting problem (under known a;(ay),as(as), p1, p2), evaluated at the sample
analgoues (Wald, LM, and AR statistics). By construction, ¢? satisfies (D.1) and (D.2), so
¢ € €. Furthermore, by a direct application of Theorem 1 in Miiller (2011), it follows that
for any &; # 0 and any ¢, € &',

lim E[¢,] < lim E[¢2] for all me M',6 = 4y,
n—00

n—ao0
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which subsequently implies that for any é; # 0 and any ¢,, € €,

lim E[¢,] < lim E[¢?] for all me M,d = ;.

n—o0

Lastly, note that E [¢*] is continuous in (&1, &g, p1, p2), which are consistent for (ay, ag, p1, p2)
under the assumptions of Theorem 4.1 by Lemma B.12. By the continuous mapping theorem,
we thus have that, for any 6, E[¢%] = E[¢2] + 0,(1). Therefore, we have ¢} satisfies (4.1)

and (4.2), and thus ¢* € €. In addition, for any ¢; # 0, and any ¢, € €,

lim E[¢,] < lim E[¢?] = lim E[¢X] for all me M,§ = 6;.

n—0o0 n—0o0

For the second part, it is straightforward to check that ¢, € €. Also, note that the
comparison of local asymptotic power of ¢* and by, can be reduced to the comparison of the
non-centrality parameters for ¢? and &n in their limiting distributions, which are given by

(a"V~1a)é? and a?6?, respectively, where

a=lay |- V=1p 1 pa
0 Opgl

Direct calculation yields

52 2
(a'V'a)§® — aid® = ——— (as — prar)” = 0,
Y10
and since p? + p3 < 1 and § # 0, we obtain the desired result. O

D.4 Proof of Theorem 4.3

We shall distinguish between the two cases: (i) II'II/v/K is diverging and (ii) TITII/v/K is

bounded, and argue along the appropriate subsequence as in Step 2 and 3 in the proof of

109



Lemma B.8.

For the first case, we have

(XT24,2TX) 1 (XT24,27e) N )

T(ﬁO) = ’
@1 \/ cbl
XT(P—-Ple §XT(P-P)X
Py - X =P ST(P - P)X)
Ve Ve
AT o =\ A
AR © (P AP)@
VT
under the fixed alternative. On the event X (P — P)X > 0, we can write
S(XT(P-P)X) ) 6
Ve JXT(P = P)X)IS(XT(P = P)X) /4,

By repeating the proof of Lemma B.9 for the other terms in the above expression beside

§/7/®; and 5/\/@ (which do not depend on a; and ay), we can write

T() | (9B
LM(5) | = | 6/ | + B
AR 0

where R, = O,(1). Recall the definition (w;, w2, ws)":

—12 X —1/2
w1 1 ﬁl 0 by by 1 ,51 0 a
1 N N
W |= X, 1 Do ba [ [b2|= [P 1 po Qz |
A/ b2 + b3 + b3 . .
s 0 p 1 by |\ by 0 5 1 0

and note that (wy,ws,w3)" = O,(1). We have

0<1-—E[¢*]

n

=P (1T (Bo) + LM (By) + W3 AR)* < C,)
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<P (1T (Bo) + LM (By) + W3 AR)* < Co, X (P — P)X > 0) + P (X(P — P)X <0)

<4/§ Ci% X VaTV=1a + O, ><(Ca +P(XT(P-P)X <0),

& 1 5 0 §5/7/ @ dn

. . ~ . . 1 .
a=lay | V=1_[p 1 pofs 5/\/ A_&TX Qg |

where

and we used the fact that &, x &; + @y X dg + @3 x 0 = VATV-14. In addition, we have
O, /P, - 1 and $y/Py —2> 1 by (C.20), (C.26) and Lemma B.7, whence ®; = 0p(1) and

o, = 0p(1) by (C.21) and (C.25). Therefore, we have

1 1 /
) g g OéTle[—>OO OO, f0r5>0((5<0),
1 2

where we use the fact that |&], = 1 by construction, V=1 > V=1 where

1 P1 0
V=1p 1 pf
0 P2 1

by Lemma B.12, whence &TV =14 can be bounded away from zero with probability approach-
ing one. Together with the fact that X T (P — P)X > 0 with probability approaching one by
(C.26) and II'TT — oo, this implies that lim,, . E [¢*] = 1

For the second case, by Lemma B.12, we have p; —— p; and py —— ps, and note
that p; = 0 in this case since II"TI/K — 0. In addition, similar to the proof of Step 3
of Lemma B.8, it can be shown that &)2 v Oy for some random variable ®5 such that

$, > 0 with probability one, and since ®; —2> 0 by (C.20), (C.21) and Lemma B.7, it
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follows that &3 —— 1 and Gy —— 0, by the continuous mapping theorem. Therefore, we have
1 2> 1, &y = 0 and W3 = 0. Finally, as in the proof for the first case above, we have
T(8o) = 6/4/ By + O,(1) where &, = 0,(1), LM(8B,) = O,(1) and AR = O,(1). It follows

that lim,, . E[¢*] = 1. This concludes the proof. O

D.5 Proof of Theorem A.1

We shall argue along the appropriate subsequence as in Step 4 of the proof of Lemma B.S8.

Suppose we are under the local alternative that 5 — By = dd,,. We have

. rzu ) (i)
! XTzfln\/ﬁ

\/XTzA OA,2TX

T 4 ST o
(Z[g]e[g]> <X[g]€[g])] )

%MIM

and note the important fact that

when d, = 1, and thus

2

S0 1 )
22 | [zTé (XTé )]
=575 7os D1 () (Xpéral

By Lemmas B.7 and B.11, we have p? %> p?. Together with the fact that p2 —2» p3 by
Lemmas B.7 and B.11, this implies that p? + p2 < 1 with probability approaching one. On

that event, direct calculation yields
i T(Bo) + wa LM (By) + w3sAR
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_ T(Bo)ar(1 — p3) — T(Bo)prda + LM (Bo)(G2 — prdn) + ARpa(prdy — 042)
V1= 7= p3/63(1 = p8) — 2p1dnds + 63

We shall analyze each term in turn. To begin with, we note that, similar to the proof of
Step 4 of Lemma B.8, it can be shown that <T>1 v @y for some random variable ®; such
that &, > 0 with probability one, and since &, —2> 0 by (C.25), (C.26) and Lemma B.7, it

follows that &y — 0 and @&, — 1, by the continuous mapping theorem. Note also that

XT2A,2TX)™! 1 .
T(bo) = (X 2wz X) X XTzAn\/§
\/XTzA ZTX)~ VXT2A4,04,-TX

x\/g \FZz“ \/L(s

= Op(1)7

and thus

T(Bo)dr (1 = p3) = op(1).

Next, we note that

A XT2A,2TX)! 5
T = -t (28
\/(XTzAnzTX)—2 2

1 - 1
X — Z Z[g]e[g] X
\/ﬁge[G] 12

In addition, we can show that
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which, combining with the fact that A, /An -2, A, implies that

(XT2A4,2TX)™!

=1+ OP<1).
\/(XTzAnzTX)*Q
If follows that, by Lemmas B.7 and B.11,
1
T(Bo)pra = pr x —= ZE;]é[g] + op(1)
va 9€[G]
Next, we note that
XT(P-P
LM (5y) = ( - ) + ad + op(1)
VS
1 = ~ g ~
N 2 Mige+ 2, VigPomén |+ ad + op(1),
g€[G] 9,he[G]2,9#h

where the first equality is by (C.26) and Lemma B.7, and the second equality is by Lemmas
B.3 and B.7. It follows that

LM(Bo)(d2 — prdn) = ﬁ[Tg]é[g] + Z ‘7[—g|—]P[g,h]é[h] + ad + op(1).

9€[G] 9:h€[G]?.9#h

Gl -

Next, we note that

5= 5

Z &l Prgném + op(1).
g,he[G]2,g#h

by (C.22), (C.24), and Lemmas B.3 and B.7. It follows that

C 1 . .
ARpo(pron — Ga) = —pa % Nes > ClgPemém +or(l)
g,he[G)?,g#h
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by Lemma B.11. Finally, we have

L—pi—p == 1= — i,

G2(1 — p2) — 2p16nGy + G2 25 1.
Combining all the results, we have

1 T(Bo) + wo LM (By) + wsAR
B —p1

1 -
= = X Z141€[9]
Visd A a2

1 1

* = X Z et + Z Vig Pomém | + ad
L= pi = vy 9e[G] ,he[G]2,g4h

—P2 1 ~T ~
+ X €1 Prgm€m + op(1).
= [9]* [g,R]E[R] P
VI=p=r VT e g

Furthermore, we note that in the proof of Lemma B.10, we only require 11 to satisfy

1 Lo 1 o
¥ 2 il = 0. iy = o)

which is guaranteed by Assumptions 1 and 2. We also have

1

1 T .
5 g;[(;] Z[Q]Z[g] = 0(1)7 5 ?elfg]{ Z[g]Z[g] = 0(1),

by Assumption 1 alone. Therefore, we can replace \/LE Zle flgl]é[g] with \/Lﬁ 2 elc] z&]é[g] in

the proof of Lemma B.10. Note that in this way, Assumption 2 is no longer needed. We
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thus can follow the same argument in the proof of Lemma B.10 and obtain that

78 Zgefc) 1o il 0 1 o 0
\/LE (de[G] 1_[E;]é[g] + Zg,he[GP,g;éh V[;] P[g,h]é[h]> +ad |~ N ad || pr 1 p2
\/LY Zg,hE[GP,g#h éﬂy] Plon€n) 0 0 p2 1

The desired result then follows.

Next, suppose we are under the fixed alternative. From the proof above, we have

T (Bo) + w2 LM (o) + W3 AR

= Qo)) + 0p)

V1-pt—p3

_ Utorl) (0 gy 0p1) + 0p(1) | + On(1)

by (C.26) and Lemma B.7, and note that D, = op(1) by (C.25) and Lemma B.7. If follows

that
(1T (Bo) + @2 LM (By) + &3 AR)* -2 o,
and the desired result follows. This concludes the proof. O

D.6 Proof of Theorem A.2

Under the local alternative, similar to the proof of Theorem A.1, we have

XT2A,2TX)1 1 o
T(Bo) = (X 2Anz X) X _— XT2A, QY2
\/(XTZAnZTX)72 VXT2A,04,:TX
. d,
x Q12002 « 12 Z 2gllel + —=0 = Op(1),
g€[G] q)l
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1 N - _
LM(,@O) = \/_i Z HEJ]G[Q] + Z V[;]P[g,h]e[h] + ad + 0p(1),
g,he[G]2,g#h

1

AR=— Ep  Prgm€in) + 0p(1).
s [g14 Tg.h1€[n] + Op
T 9,he[G]?,g#h

By repeating the proof of Lemma B.10 and ignoring \/L@ 25:1 ﬁ[Tg]é[g] (and thus Assumption

2 is not needed), we have

LM (f ad 1
(Bo) — N A
AR 0 p 1

by the Slutsky theorem. For p;, we have

- s 5 (0505 (50

:\ﬁx 1 i
Y A XT2A,0QA4,:TX

N 1 5
~1/2(y1/2 —-1/2 T 5 X ¢
x Q12O —ﬁZQ / E : [( 291€1a1) < [g]e[9]>]’
9€[G]

where

1

VXA QA TXXTZA"QW = Orll);
zAQUA, 2

and by Lemma B.11,

\%Qm > | Glaé) (Xiew) | = \%Qm . E | (lgéra) (M) | +or(0):

g€[G]

Further note that the first term on the right-hand side of the above display is o(1) since
II'"II/K — 0, so that p; — 0 by Lemma B.7. In addition, we have p, > p by Lemmas

B.7 and B.11. Finally, similar to the proof of Step 4 of Lemma B.8, it can be shown

117



that CTDI v @y for some random variable ®; such that ®; > 0 with probability one, and
since @y —2> 0 by (C.25), (C.26) and Lemma B.7, it follows that 41 — 0 and &y — 1,

by the continuous mapping theorem. This implies that & — 0, wy —— 1/4/1 — p? and

ws —> —p/+/1 — p2, whence

T (Bo) + w2 LM (Bo) + 03AR

) — —L AR+ 0,(1)

1
- M
£/ 1= p? (Bo 1—0p
1
—- N[ —
V1= p? '

where A; and N, are defined in Theorem A.2.
Under the fixed alternative, similar to the proof of Theorem A.1, we have lim,,_,,, E [¢*] =

1. This concludes the proof. O

E Additional Simulations

In this section, we present some additional simulation results to illustrate the effect of weak
low-dimensional IVs. We set 1) = 30 so that the identification strength of many IVs remains
relatively strong, and ¢ = 0 so that the identification strength of the one-dimensional IV is
rather weak. Figure 1 displays the power curves for K = 100 and K = 500, respectively,
which can be regarded as extensions of Panels A and B of Figure 3 in the main text. Overall,
the dominant performance of our combination test remains robust to different strengths of
one-dimensional IV, and the Wald test based on one-dimensional IV provides a nontrivial
gain in power (as seen from the noticeable gaps between the power curves of ¢* and the LM
test). This gain arises from its correlation with the LM statistic, in line with the theoretical

result stated in Theorem A.1.
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F Additional Empirical Applications

In this section, we consider the return to education application, using the dataset of Angrist
and Krueger (1991). In this application, the outcome variable is the log weekly wages and
the endogenous variable is the years of schooling. We follow Mikusheva and Sun (2022) and
Lim et al. (2024) to consider two specifications with 180 and 1530 instruments. The set of
180 instruments consists of 30 quarter and year of birth interactions (QoB-YoB) and 150
quarter and place of birth interactions (QoB-PoB). The set of 1530 instruments includes all
interactions among QoB-YoB-PoB. The quantitative implications obtained from Table 1 and
Figure 2 are in line with the discussion in Section 2 of the main text. However, we reiterate
that, although the low-dimensional IVs (and therefore 3, and the Wald confidence interval)
are identical across the two specifications by construction, we are not attempting to ob-
tain improved inference based on pooling statistics across specifications, and our theoretical

results do not justify such an approach.
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Figure 1: Power Curve of the combination, Wald, and jacknife LM tests.

Notes: This figure displays the power curves for our combination test ¢* along with those for the compo-
nent Wald and jacknife LM tests, at different values of K (the dimension of the many IVs), b = 30 (the
identification strength of the many IVs is relatively strong), and ¢ = 0 (the identification strength of the
one-dimensional IV is weak). The horizontal axis represents the deviations in the parameter of interest from
the maintained hypothesis, that is, we are interested in testing Hg : 8 = Py against Hy : 8 # [y, and
0 = B — By. See Section 5 in the main text for a detailed description of the simulation setup. All results are
based on 5,000 simulations.
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K =180 K = 1530

1 0.489 0.236
fo —0.170 —0.200
6(61)/6(52) 1.191 0.807
B 0.098 0.098
Wald CI (0.059, 0.138)  (0.059, 0.138)
By 0.099 0.084
LM CI (0.066, 0.132)  (0.035, 0.133)
B 0.097 0.093

Comb. CI  (0.066, 0.127) (0.059, 0.126)

Table 1: Point estimates and confidence intervals: returns to education.

Notes: This table reports the estimation and inference results for the return to education example using
the Angrist and Krueger (1991) dataset, shown separately for specifications with K = 180 instruments and
K = 1530 instruments. The IV set in the column labeled “K = 180” consists of 30 quarter and year of
birth interactions (QoB-YoB) and 150 quarter and place of birth interactions (QoB-PoB), while the IV set
in the column with “K = 1530” includes full set of interactions among QoB—YoB—-PoB. See Appendix D in
Lim et al. (2024) for a more detailed description of data and this empirical application. The point estimates
are obtained from the standard two-stage least squares (TSLS) estimator with the three-dimensional QoB
instruments, 31, and, in addition, from the leave-one-out estimator, /32, which makes use of all base IVs.
Wald CI and LM CI denote the confidence intervals based on Bl and BQ, respectively. The estimator ,5’*
is the combined estimator for [, defined in Section 4.3 of the main text. It is essentially the midpoint of
the confidence interval in (4.4), which is obtained from our combination test and labeled as “Comb. CI”
in the table. In addition, p; and p2 denote estimates of the asymptotic correlation between the Wald and
LM statistics, and between the LM and AR statistics, respectively. Finally, &(Bl) / &(Bg) denotes the ratio of
standard errors of Bl and Bg. All displayed numbers are rounded to three decimal places.
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Figure 2: Realized percentage reduction in confidence interval length: returns to education

Notes: This figure shows, for each specification in the returns to education example, the observed percentage
decrease in confidence interval length (Combined CI versus Wald CI, as in Table 1, and indicated by “0” in
figure legends) plotted as a point against the standard error ratio (6(51)/6(32) in Table 1). Also shown is
the theoretical lower bound for the reduction (indicated by “p” in figure legends), analogous to Figure 1 in
the main text, but now computed using the specification-specific estimate p;, as reported in Table 1. Here,
“K180” refers to the specifications with K = 180 instruments, and “K1530” refers to the specifications with
K = 1530 instruments. The horizontal axis is the ratio of standard deviations (errors) of By and 5. The
vertical axis is the reduction in the length of confidence interval in percentage points. As a final remark,
note that the actual numerical values of the relevant quantities in Table 1, rather than the rounded values

shown there, are used to produce Figure 2.
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