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A Combination Test with Weak Low-Dimensional IVs

In this section, we study the property of our combination test when Assumption 2 is violated.

Specifically, we assume that the identification strength provided by the low-dimensional IVs

is weak, rendering the Wald test invalid. On the other hand, we assume that the identification

strength provided by the many IVs is strong. To characterize the limiting behavior of the

low-dimensional IVs under weak identification, we introduce the following assumptions.

Assumption 21. Let Assumption 2.1 hold. In addition, the following conditions hold almost

surely:

1. For rn “
›

›zJΠ
›

›

2
, rn{

?
n “ Op1q;

∗We are grateful to Michal Kolésar for helpful comments. Any and all errors are our own.
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2. It holds that

1

n

¨

˚

˝

ř

gPrGs
E

´

zJ
rgs
ẽrgs

¯ ´

zJ
rgs
ẽrgs

¯J
ř

gPrGs
E

´

zJ
rgs
ẽrgs

¯ ´

zJ
rgs
Ṽrgs

¯J

ř

gPrGs
E

´

zJ
rgs
Ṽrgs

¯ ´

zJ
rgs
ẽrgs

¯J
ř

gPrGs
E

´

zJ
rgs
Ṽrgs

¯ ´

zJ
rgs
Ṽrgs

¯J

˛

‹

‚

ą 0,

in the matrix sense for all n large enough.

Remark A.1. Compared to Assumption 2, the main difference here is that we have rn{
?
n “

Op1q. This corresponds to weak identification of the parameter of interest β under the low-

dimensional IVs, since in this case the deterministic part and the random part of zJX are of

the same order. This setting is similar to the weak-IV asymptotics considered in Staiger and

Stock (1997), where zJX{
?
n converges to a random limit instead of diverging to infinity

(the latter would happen under a standard asymptotics where zJX{n is assumed to converge

to a non-zero fixed limit).

In the following, we first present the results for the case with dz “ 1. Note that it

is the most important case for empirical applications of IV regressions. For instance, 101

out of 230 specifications in Andrews, Stock, and Sun (2019)’s sample and 1,087 out of

1,359 in Young (2022)’s sample feature one endogenous regressor and one IV. Similarly, Lee,

McCrary, Moreira, and Porter (2022) find that 61 out of 123 IV papers published in AER

between 2013 and 2019 use one endogenous regressor and one IV. For these applications,

empirical researchers can generate many IVs by using polynomials or interactions based

on their one-dimensional base IV and control variables. Then, it is possible to achieve

efficiency improvement using our combination procedure. Furthermore, dz is also equal to

one in the widely used shift-share IV regressions. It turns out that in this case, the local

asymptotic power function of our combination test is equal to that of the asymptotically

optimal test based on zJepβ0q{
?
Ω, LMpβ0q, and AR, where the first statistic corresponds

to the conventional cluster-robust AR test using z as instruments.
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Theorem A.1. Suppose that dz “ 1. Assume that the following limit exist (almost surely):

ρ̄1 “ lim
nÑ8

1
?
ΩΣ

ÿ

gPrGs

E
”

`

zJ
rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯ı

,

ρ2 “ lim
nÑ8

2
?
ΣΥ

ÿ

g,hPrGs2,g‰h

E
”´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

ı

,

and ρ̄21 ` ρ22 ă 1. Under Assumptions 1, 21 and 3, and assume that ΠJΠ{
?
K Ñ 8, then we

have:

1. Suppose that there exists a deterministic sequence dn Ó 0 such that

dnΦ
´1{2
2 Ñ a ą 0, and β ´ β0 “ δdn,

for some fixed δ, then

lim
nÑ8

E rϕ˚
ns “ P

¨

˝

˜

´
ρ̄1

a

1 ´ ρ̄21 ´ ρ22
N1 `

1
a

1 ´ ρ̄21 ´ ρ22
N2 ´

ρ2
a

1 ´ ρ̄21 ´ ρ22
N3

¸2

ě Cα

˛

‚

“ P
ˆ

χ2
1

ˆ

δ2
a2

1 ´ ρ̄21 ´ ρ22

˙

ě Cα

˙

,

where

¨

˚

˚

˚

˚

˝

N1

N2

N3

˛

‹

‹

‹

‹

‚

d
“ N

¨

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˝

0

aδ

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

1 ρ̄1 0

ρ̄1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‚

.

2. Suppose that β ´ β0 “ δ for some fixed δ ‰ 0, then limnÑ8 E rϕ˚
ns “ 1.

Theorem A.1 implies that, in the scalar case (dz “ 1), our approach is equivalent to an op-

timal combination of the low-dimensional AR, Jackknife LM, and Jackknife AR. A key scalar-

specific feature is that the discrepancy between the low-dimensional AR and low-dimensional

Wald (i.e., T pβ0q) effectively reduces to a random sign that cannot be consistently estimated

when the IV z is weak; correspondingly, ρ̂1 is inconsistent, and the low-dimensional Wald
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is non-normal. However, by appropriately choosing combination weights, this unidentifiable

sign component cancels out, preserving the validity of our combination test in the important

scalar setting.

When dz ą 1, it is no longer possible to cancel the random sign. Nevertheless, if the cor-

relation between T pβ0q and LMpβ0q is asymptotically negligible, our combined test remains

unaffected by T pβ0q, as shown in the next result.

Theorem A.2. Assume that the following limit exists (almost surely)

ρ “ lim
nÑ8

2
?
ΣΥ

ÿ

g,hPrGs2,g‰h

E
”´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

ı

,

with ρ2 ă 1. Under Assumptions 1, 21 and 3, and assume that ΠJΠ{
?
K Ñ 8. If further

assume ΠJΠ{K Ñ 0, then we have:

1. Suppose there exists a deterministic sequence dn Ó 0 such that

dnΦ
´1{2
2 Ñ a ą 0, and β ´ β0 “ δdn,

for some fixed δ, then

lim
nÑ8

E rϕ˚
ns “ P

¨

˝

˜

1
a

1 ´ ρ2
N1 ´

ρ
a

1 ´ ρ2
N2

¸2

ě Cα

˛

‚“ P
ˆ

χ2
1

ˆ

δ2
a2

1 ´ ρ2

˙

ě Cα

˙

,

where

¨

˚

˝

N1

N2

˛

‹

‚

d
“ N

¨

˚

˝

¨

˚

˝

aδ

0

˛

‹

‚

,

¨

˚

˝

1 ρ

ρ 1

˛

‹

‚

˛

‹

‚

.

2. Suppose that β ´ β0 “ δ for some fixed δ ‰ 0, then limnÑ8 E rϕ˚
ns “ 1.

Under the local alternative β ´ β0 “ δdn, limnÑ8 E rϕ˚
ns coincides exactly with the local

asymptotic power function of the asymptotically optimal test based on LMpβ0q and AR

in Lim, Wang, and Zhang (2024). The assumption that ΠJΠ{K Ñ 0 is similar to the

4



assumption in Mikusheva and Sun (2022, Theorem 4). As pointed out by Mikusheva and

Sun (2022), this condition is quite weak as it still covers both weakly and strongly identified

cases (with many IVs). In addition, we notice that under fixed alternatives, the combination

test remains consistent even when the identification strength of the low-dimensional IVs is

weak.

Note also that it is possible to combine the low-dimensional AR, Jackknife LM, and

Jackknife AR directly, provided that the many IVs are strong. In this way, the combination

test is robust against weak low-dimensional IVs when dz ą 1 without further assumptions. In

this paper, however, we emphasize Wald-based inference for the low-dimensional IV setting

because it is the workhorse in empirical applications and, when low-dimensional IVs is strong,

Wald is more powerful than AR in the overidentified case.

Finally, if both low-dimensional IVs and many IVs are weak, then by using null-imposed

variance estimators, the combination test that combines the low-dimensional AR, Jackknife

LM, and Jackknife AR is robust to arbitrary weak identification, regardless of dz provided

that it is bounded. It is also possible to consider a broader combination that includes

weak-identification-robust AR and LM (along with Jackknife LM and Jackknife AR). This

is beyond the scope of the current paper.

B Technical Lemmas

We use the following notation throughout Sections B-D. Recall the definition of Ỹ , X̃, Z̃,

z̃, W , Π̃, Ṽ and ẽ. Denote PW as the projection matrix of W , MW “ In ´ PW , and let

Y “ MW Ỹ , X “ MW X̃, Z “ MW Z̃, z “ MW z̃, Π “ MW Π̃, V “ MW Ṽ and e “ MW ẽ.

Denote P as the projection matrix of Z, M “ In ´ P , and Q “ MW pP ´ P̄ qMW , where P̄

is the block diagonal matrix corresponding to P such that the g-th block on its diagonal is

Prg,gs; also denote Q̄ as the block diagonal matrix corresponding to Q. Let Π́ “ zAnz
JX,

Π̂ “ MW pP ´ P̄ qΠ “ QΠ̃, Π̄ “ pQ ´ Q̄qΠ̃, X́ “ zÂnz
JX and X̂ “ MW pP ´ P̄ qX. Finally,
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we use Ωẽ to denote the block diagonal matrix with g-th block Ωẽ,ẽ
g , and ΩṼ , Ωẽ,Ṽ and ΩṼ ,ẽ

are defined similarly.

Lemma B.1. Under Assumption 1, we have

max
gPrGs

´

Π̃J
rgsΠ̃rgs

¯2

` max
gPrGs

E
´

Ṽ J
rgsṼrgs

¯2

` max
gPrGs

E
`

ẽJ
rgsẽrgs

˘2
ď C,

max
gPrGs

`

ΠJ
rgsΠrgs

˘2
` max

gPrGs
E

`

V J
rgsVrgs

˘2
` max

gPrGs
E

`

eJ
rgsergs

˘2
ď C,

for some constant C ă 8. In addition, let γ̂ẽ “ pWJW q´1WJẽ and γ̂Ṽ “ pWJW q´1WJṼ ,

we have

max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2
“ oP p1q, max

1ďgďG

›

›Wrgsγ̂Ṽ
›

›

2
“ oP p1q.

Lemma B.2. If Assumptions 1 and 3 hold, then both P and Q are symmetric, and satisfy

}P }op “ Op1q,
›

›P̄
›

›

op
“ Op1q, }P }F “ Op

?
Kq,

}Q}op “ Op1q,
›

›Q̄
›

›

op
“ op1q, }Q}F “ Op

?
Kq.

In addition, let P̃ be the block lower triangular matrix corresponding to P ´ P̄ (i.e. P̃rg,hs “

Prg,hs for g ą h and P̃rg,hs “ 0ngˆnh
otherwise), then

›

›

›
P̃ P̃J

›

›

›

F
“ Op

?
Kq.

Lemma B.3. Under Assumptions 1 and 3, we have

ũJP̄PW ṽ “ OP p1q, ũJPW P̄ ṽ “ OP p1q, ũJP̄PW P̄ ṽ “ OP p1q,

for pũ, ṽq P tṼ , ẽu ˆ tṼ , ẽu.
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Lemma B.4. Under Assumptions 1 and 3, we have

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

uJ
rhsPrh,gsvrgs

˛

‚

2

“
1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

ũJ
rhsPrh,gsṽrgs

˛

‚

2

` oP p1q

“
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

ũJ
rhsPrh,gsṽrgs

˛

‚

2

` oP p1q,

1

K

ÿ

g,hPrGs2,g‰h

`

uJ
rhsPrh,gsvrgs

˘ `

uJ
rgsPrg,hsvrhs

˘

“
1

K

ÿ

g,hPrGs2,g‰h

`

ũJ
rhsPrh,gsṽrgs

˘ `

ũJ
rgsPrg,hsṽrhs

˘

` oP p1q

“
1

K

ÿ

g,hPrGs2,g‰h

E
`

ũJ
rhsPrh,gsṽrgs

˘ `

ũJ
rgsPrg,hsṽrhs

˘

` oP p1q,

for pu, vq P tV, eu ˆ tV, eu, and the same results hold if we replace P with Q. In addition, we

have

1

K

ÿ

g,hPrGs2,g‰h

E
`

ũJ
rhsPrh,gsṽrgs

˘2
“

1

K

ÿ

g,hPrGs2,g‰h

E
`

ũJ
rhsQrh,gsṽrgs

˘2
` op1q,

1

K

ÿ

g,hPrGs2,g‰h

E
`

ũJ
rhsPrh,gsṽrgs

˘ `

ũJ
rgsPrg,hsṽrhs

˘

“
1

K

ÿ

g,hPrGs2,g‰h

E
`

ũJ
rhsQrh,gsṽrgs

˘ `

ũJ
rgsQrg,hsṽrhs

˘

` op1q,

for pũ, ṽq P tṼ , ẽu ˆ tṼ , ẽu.

Lemma B.5. Under Assumptions 1 and 3, we have Σ ě CpΠJΠ ` Kq for some constant

C ą 0, and

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

“
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q,

“
1

Σ

ÿ

gPrGs

E
`

Π̄J
rgsẽrgs

˘2
`

1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsQrh,gsẽrgs

¯2

` oP p1q,
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1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsergs

˛

‚

2

“
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q,

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

2

“
1

Σ

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘2
`

1

Σ

ÿ

gPrGs

E
´

Π̄J
rgsṼrgs

¯2

`
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

2

`
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

2

` oP p1q,

and

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsergs

˛

‚

“
1

Σ

ÿ

gPrGs

E
´

Π̄J
rgsṼrgs

¯

`

Π̄J
rgsẽrgs

˘

`
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsẽrgs

˛

‚` oP p1q.

Lemma B.6. Under Assumptions 1 and 3, we have

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsẽrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

` oP p1q,
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1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hserhs

¯ ´

X̃J
rhsQrh,gsergs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

` oP p1q,

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsXrgs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsṼrhs

¯ ´

Ṽ J
rhsQrh,gsṼrgs

¯

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsΠrgs

¯

`
2

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsṼrgs

¯

` oP p1q,

and

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsergs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsṼrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

`
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsẽrgs

¯

` oP p1q.

Lemma B.7. Let β́ be a generic estimator of β. Further define

Ψ́ “ XJzÂnΏÂnz
JX,

Σ́ “
ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsérgs

˛

‚

2

`
ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsérhs

¯ ´

X̃J
rhsQrh,gsérgs

¯

,

Ύ “ 2
ÿ

g,hPrGs2,g‰h

`

éJ
rgsPrg,hsérhs

˘2
,
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where é “ Y ´ Xβ́ and

Ώ “
ÿ

gPrGs

`

zJ
rgsérgs

˘ `

zJ
rgsérgs

˘J
.

Suppose that β́
p

ÝÑ β, then the following holds.

1. If Assumption 1 holds, then

Ω̂´1{2Ω1{2
“ Idz ` oP p1q

2. If Assumptions 1 and 2 hold, then

Ψ́

Ψ
“ 1 ` oP p1q.

3. If Assumptions 1 and 3 hold, then

Σ́

Σ
“ 1 ` oP p1q,

Ύ

Υ
“ 1 ` oP p1q.

Lemma B.8. Under Assumptions 1-3, we have β̂
p

ÝÑ β and pβ̂ ´ βq2ΠJΠ{
?
K “ oP p1q.

Alternatively, if Assumptions 1, 21 and 3 hold and ΠJΠ{
?
K Ñ 8, we have β̂

p
ÝÑ β and

pβ̂ ´ βq2ΠJΠ{
?
K “ oP p1q.

Lemma B.9. Under Assumptions 1-4, if the assumptions for a1 and a2 in Theorem 4.1

hold, then

¨

˚

˚

˚

˚

˝

T pβ0q

LMpβ0q

AR

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1?
Ψ

řG
g“1 Π́

J
rgs
ẽrgs

1?
Σ

´

ř

gPrGs
Π̂J

rgs
ẽrgs `

ř

g,hPrGs2,g‰h Ṽ
J

rgs
Prg,hsẽrhs

¯

1?
Υ

ř

g,hPrGs2,g‰h ẽ
J
rgs
Prg,hsẽrhs

˛

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˝

a1δ

a2δ

0

˛

‹

‹

‹

‹

‚

` oP p1q.
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Lemma B.10. If Assumptions 1-4 hold, then

¨

˚

˚

˚

˚

˝

1?
Ψ

řG
g“1 Π́

J
rgs
ẽrgs

1?
Σ

´

ř

gPrGs
Π̂J

rgs
ẽrgs `

ř

g,hPrGs2,g‰h Ṽ
J

rgs
Prg,hsẽrhs

¯

1?
Υ

ř

g,hPrGs2,g‰h ẽ
J
rgs
Prg,hsẽrhs

˛

‹

‹

‹

‹

‚

ù N

¨

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˝

0

0

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

1 ρ1 0

ρ1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‚

.

Lemma B.11. Under Assumptions 1 and 3, we have

1
?
Σ
Ω´1{2

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

X̂J
rgsêrgs

¯ı

“
1

?
Σ
Ω´1{2

ÿ

gPrGs

E
”

`

zJ
rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯ı

` oP p1q,

and

1
?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

XJ
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘

“
1

?
ΣΥ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

` oP p1q.

Lemma B.12. Under Assumptions 1–4, we have

ρ̂1
p

ÝÑ ρ1, ρ̂2
p

ÝÑ ρ2.

If in addition the assumptions for a1 and a2 in Theorem 4.1 hold, then

α̂1
p

ÝÑ α1, α̂2
p

ÝÑ α2.

11



C Proofs of Technical Lemmas

C.1 Proof of Lemma B.1

The first result follows readily from Assumption 1. For the second result, note that for any

g P rGs, we have

`

ΠJ
rgsΠrgs

˘2
“

˜

ÿ

iPIg

Π2
i,g

¸2

ď C
ÿ

iPIg

Π4
i,g ď C.

In addition, by an abuse of notation, for any i P rns and g P rGs, we denote M
piq
W as the i-th

column of MW , and M
piq
W,rgs

P ℜng is vector that collects all elements in the n-dimensional

vector M
piq
W that belong to the g-th cluster. Then, we have

EV 4
i,g “ E

¨

˝

ÿ

gPrGs

M
piq,J
W,rgs

Ṽrgs

˛

‚

4

ď C

¨

˝

ÿ

gPrGs

´

M
piq,J
W,rgs

M
piq
W,rgs

¯2

`
ÿ

g,hPrGs2,h‰g

´

M
piq,J
W,rgs

MW,rgs

¯ ´

M
piq,J
W,rhs

MW,rhs

¯

˛

‚

ď C,

by the first result and the fact that

ÿ

gPrGs

´

M
piq,J
W,rgs

M
piq
W,rgs

¯

“ M
piq,J
W M

piq
W “ MW,ii ď C.

It follows that

E
`

V J
rgsVrgs

˘2
“ E

˜

ÿ

iPIg

V 2
i,g

¸2

ď C
ÿ

iPIg

EV 4
i,g ď C.

12



Using the same argument, we also have

E
`

eJ
rgsergs

˘2
ď C,

and the desired result follows. Finally, for the last result, by Assumption 1, we have γ̂ẽ “

OP p1{
?
nq and γ̂Ṽ “ OP p1{

?
nq, and thus

max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2
ď max

1ďgďG
ng ˆ max

iPIg ,gPrGs
}Wi,g}

2
2 ˆ }γ̂ẽ}

2
2 “ oP p1q,

max
1ďgďG

›

›Wrgsγ̂Ṽ
›

›

2

2
ď max

1ďgďG
ng ˆ max

iPIg ,gPrGs
}Wi,g}

2
2 ˆ }γ̂Ṽ }

2
2 “ oP p1q.

C.2 Proof of Lemma B.2

For the first part of Lemma B.2, the results for P are standard for projection matrix, so we

focus on the results for Q. We have

}Q}op “
›

›MW pP ´ P̄ qMW

›

›

op
ď }MW }

2
op

›

›P ´ P̄
›

›

op
“ Op1q,

and

}Q}F “

b

tracepMW pP ´ P̄ qMW pP ´ P̄ qMW q ď C
›

›P ´ P̄
›

›

F
“ Op

?
Kq.

In addition, we note that

Q̄ “ P̄W P̄ ` P̄ P̄W ´ P̂ ,

where P̄W is the block diagonal matrix corresponding to PW and P̂ is a block diagonal matrix

such that the g-th block on its diagonal is
řG

h“1 PW,rg,hsPrh,hsPW,rh,gs (corresponding to the

13



block diagonals of PW P̄PW ). By Assumption 1, we have

max
1ďiďn

PW,ii ď max
iPIg ,gPrGs

}Wi,g}
2
2 ˆ λmax

`

pWJW q
´1

˘

“ op1q,

and thus

max
1ďgďG

λmax

`

PW,rg,gs

˘

ď max
1ďgďG

ng ˆ max
1ďiďn

PW,ii “ op1q,

which implies that λmax

`

P̄W

˘

“ op1q. It follows that

›

›Q̄
›

›

op
ď

›

›P̄W P̄
›

›

op
`

›

›P̄ P̄W

›

›

op
`

›

›

›
P̂

›

›

›

op

ď 2
›

›P̄W

›

›

op

›

›P̄
›

›

op
` max

1ďgďG

›

›

›

›

›

›

ÿ

hPrGs

PW,rg,hsPrh,hsPW,rh,gs

›

›

›

›

›

›

op

ď C max
1ďg,hďG

›

›PW,rg,hsPW,rh,gs

›

›

op
` op1q

ď C max
1ďgďG

›

›PW,rg,gs

›

›

op
` op1q

“ op1q.

For the second part of Lemma B.2, we shall use an argument similar to Chao, Swanson,

Hausman, Newey, and Woutersen (2012). A closer inspection of their proof suggests that,

all the equalities in the proof of their Lemma B.2. remain unchanged if we replace Pij with

Prg,hs and keep the trace operator; note also that we have trace
`

pP ´ P̄ q4
˘

“ OpKq so that

(i) of Lemma B.2. still holds. To obtain (iii) of Lemma B.2. we establish results similar to

their Lemma B.1.: for any subset I2 of the set tg, huGg,h“1, we have

trace

˜

ÿ

I2

Prg,hsPrh,gsPrg,hsPrh,gs

¸

ď C
ÿ

I2

trace
`

Prg,hsPrh,gs

˘

ď C
ÿ

g,hPrGs2

trace
`

Prg,hsPrh,gs

˘

14



“ OpKq,

and similarly for any subset I3 of the set tg, h, kuGg,h,k“1, we have

trace

˜

ÿ

I3

Prg,hsPrh,ksPrk,hsPrh,gs

¸

“ OpKq,

trace

˜

ÿ

I3

Prg,hsPrh,gsPrg,ksPrk,gs

¸

“ OpKq,

and then it is easy to see that (iii) of Lemma B.2. holds. To obtain (ii) of Lemma B.2. we

define, as in their paper, the following random variables

∆1 “
ÿ

găhăk

`

ξJ
rhsPrh,gsPrg,ksξrks ` ξJ

rgsPrg,hsPrh,ksξrks ` ξJ
rgsPrg,ksPrk,hsξrhs

˘

∆2 “
ÿ

găhăk

`

ξJ
rhsPrh,gsPrg,ksξrks ` ξJ

rgsPrg,hsPrh,ksξrks

˘

∆3 “
ÿ

găhăk

`

ξJ
rgsPrg,ksPrk,hsξrhs

˘

where tξiu
n
i“1 is a sequence of i.i.d. random variables with mean 0 and variance 1, and

independent of Z̃,W (note that ξi are not only independent across clusters but also within

clusters), and then it is straightforward to verify that (ii) of Lemma B.2. also holds. These

results, together with a similar argument as in the proof of their Lemma B.3., allow us to

conclude that
›

›

›
P̃ P̃J

›

›

›

F
“ Op

?
Kq. This concludes the proof.

C.3 Proof of Lemma B.3

We focus on the case when ũ “ Ṽ and ṽ “ ẽ. We have

ˇ

ˇ

ˇ
Ṽ JPW P̄ ẽ

ˇ

ˇ

ˇ
ď

b

Ṽ JPW Ṽ ˆ
a

ẽJP̄PW P̄ ẽ “ OP p1q,
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because

E
´

Ṽ JPW Ṽ
¯

“ trace pPWΩṼ q ď λmaxpΩṼ qtrace pPW q ď C,

E
`

ẽJP̄PW P̄ ẽ
˘

“ trace
`

P̄PW P̄Ωẽ

˘

ď λmaxpΩẽqλmaxpP̄ q
2trace pPW q ď C,

since dw is fixed. The other two terms can be handled similarly.

C.4 Proof of Lemma B.4

For the first result, we focus on the case when u “ V and v “ e. To show

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

V J
rhsPrh,gsergs

˛

‚

2

´
1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2

“ oP p1q, (C.1)

we note that

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

V J
rhsPrh,gsergs

˛

‚

2

“
1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

pṼrhs ´ Wrhsγ̂Ṽ q
JPrh,gspẽrgs ´ Wrgsγ̂ẽq

˛

‚

2

“
1

K

ÿ

gPrGs

¨

˚

˝

ÿ

hPrGs,h‰g

¨

˚

˝

ṼrhsPrh,gsẽrgs ´ pWrhsγ̂Ṽ qJPrh,gsẽrgs

´Ṽ J
rhs
Prh,gspWrgsγ̂ẽq ` pWrhsγ̂Ṽ qJPrh,gspWrgsγ̂ẽq

˛

‹

‚

˛

‹

‚

2

.

We have

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

pWrhsγ̂Ṽ q
JPrh,gsẽrgs

˛

‚

2

“
1

K

ÿ

gPrGs

`

pWrgsγ̂Ṽ q
JPrg,gsẽrgs

˘2

ď
Cmax1ďgďG

›

›Wrgsγ̂Ṽ
›

›

2

2

K

ÿ

gPrGs

›

›Prg,gsẽrgs

›

›

2

2

“ oP p1q,
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by Lemma B.1, where we use the fact that WJP “ 0 and

E
1

K

ÿ

gPrGs

›

›Prg,gsẽrgs

›

›

2

2
ď
C

K

ÿ

gPrGs

tracepPrg,gsq “ Op1q.

Similarly, we have

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gspWrgsγ̂ẽq

˛

‚

2

ď
max1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2

K

ÿ

gPrGs

›

›

›

›

›

›

ÿ

hPrGs,h‰g

Prg,hsṼrhs

›

›

›

›

›

›

2

2

“ oP p1q,

since

E
1

K

ÿ

gPrGs

›

›

›

›

›

›

ÿ

hPrGs,h‰g

Prg,hsṼrhs

›

›

›

›

›

›

2

2

“
1

K

ÿ

g,hPrGs2,g‰h

E
›

›

›
Prg,hsṼrhs

›

›

›

2

2

ď
C

K

ÿ

g,hPrGs2,g‰h

tracepPrg,hsPrh,gsq

“ Op1q.

Finally, we have

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

pWrhsγ̂Ṽ q
JPrh,gspWrgsγ̂ẽq

˛

‚

2

“
1

K

ÿ

gPrGs

`

pWrgsγ̂Ṽ q
JPrg,gspWrgsγ̂ẽq

˘2

ď
Cmax1ďgďG

›

›Wrgsγ̂Ṽ
›

›

2

2
max1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2

K

ÿ

gPrGs

tracepPrg,gsq

“ oP p1q.
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Combining the above results with the triangle inequality, we have

¨

˝

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

V J
rhsPrh,gsergs

˛

‚

2˛

‚

1{2

“

¨

˝

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2˛

‚

1{2

` oP p1q.

In addition, we have

E
1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

ṼrhsPrh,gsẽrgs

˛

‚

2

“
1

K

ÿ

g,hPrGs2,g‰h

E
´

ṼrhsPrh,gsẽrgs

¯2

ď C||P ||
2
F {K “ Op1q,

which implies

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

ṼrhsPrh,gsẽrgs

˛

‚

2

“ OP p1q.

Therefore, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

V J
rhsPrh,gsergs

˛

‚

2

´
1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2ˇ
ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

V J
rhsPrh,gsergs

˛

‚

2˛

‚

1{2

´

¨

˝

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2˛

‚

1{2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

V J
rhsPrh,gsergs

˛

‚

2˛

‚

1{2

`

¨

˝

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2˛

‚

1{2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q.

Next, we show that

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2

´
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2

“ oP p1q. (C.2)
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By Markov inequality, it suffices to show that the RHS of the following display is op1q

E

¨

˝

1

K

¨

˝

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2

´
ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2˛

‚

˛

‚

2

“
1

K2
V

¨

˝

ÿ

g,h,kPrGs3,h‰g,k‰g

Ṽ J
rhsPrh,gsẽrgsṼ

J
rksPrk,gsẽrgs

˛

‚

ď
C

K2
V

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsPrh,gsẽrgs

¯2

˛

‚`
C

K2
V

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsPrh,gsẽrgsṼ

J
rksPrk,gsẽrgs

˛

‚.

(C.3)

For the first term on the RHS of (C.3), we have

1

K2
V

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsPrh,gsẽrgs

¯2

˛

‚

“
1

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsPrh,gsẽrgs

¯2

´ E
´

Ṽ J
rhsPrh,gsẽrgs

¯2

˛

‚

2

ď
C

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´

Prg,hs

´

ṼrhsṼ
J

rhs ´ ΩṼ ,Ṽ
h

¯

Prh,gs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

¯

˛

‚

2

`
C

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´

Prg,hsΩ
Ṽ ,Ṽ
h Prh,gs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

¯

˛

‚

2

`
C

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´´

ṼrhsṼ
J

rhs ´ ΩṼ ,Ṽ
h

¯

Prh,gsΩ
ẽ,ẽ
g Prg,hs

¯

˛

‚

2

.

In addition, we have

1

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´

Prg,hs

´

ṼrhsṼ
J

rhs ´ ΩṼ ,Ṽ
h

¯

Prh,gs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

¯

˛

‚

2

ď
C

K2

ÿ

g,hPrGs2,g‰h

E
´

trace
´

Prg,hs

´

ṼrhsṼ
J

rhs ´ ΩṼ ,Ṽ
h

¯

Prh,gs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

¯¯2
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ď
C

K2

ÿ

g,hPrGs2,g‰h

trace

ˆ

Prg,hsE
´

ṼrhsṼ
J

rhs ´ ΩṼ ,Ṽ
h

¯2

Prh,gs

˙

ˆ trace
´

Prh,gsE
`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘2
Prg,hs

¯

ď
C

K2

ÿ

g,hPrGs2,g‰h

trace
`

Prg,hsPrh,gs

˘

ď
C

K2
trace

`

pP ´ P̄ q
2
˘

“ op1q,

where the second inequality is by the trace Cauchy-Schwartz inequality (e.g., Magnus and

Neudecker (2019)). Similarly, we have

1

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´

Prg,hsΩ
Ṽ ,Ṽ
h Prh,gs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

¯

˛

‚

2

“
1

K2
E

¨

˝

ÿ

gPrGs

trace

˜˜

ÿ

h‰g

Prg,hsΩ
Ṽ ,Ṽ
h Prh,gs

¸

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

¸

˛

‚

2

“
1

K2

ÿ

gPrGs

E

˜

trace

˜˜

ÿ

h‰g

Prg,hsΩ
Ṽ ,Ṽ
h Prh,gs

¸

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

¸¸2

ď
1

K2

ÿ

gPrGs

trace

¨

˝

˜

ÿ

h‰g

Prg,hsΩ
Ṽ ,Ṽ
h Prh,gs

¸2
˛

‚trace
´

E
`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘2
¯

ď
C

K2

ÿ

gPrGs

trace

˜

ÿ

h‰g

Prg,hsΩ
Ṽ ,Ṽ
h Prh,gs

¸

ď
C

K2

ÿ

g,hPrGs2,g‰h

trace
`

Prg,hsPrh,gs

˘

“ op1q,

where the first inequality is by the trace Cauchy-Schwartz inequality, and, following the same
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argument,

1

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´´

ṼrhsṼ
J

rhs ´ ΩṼ ,Ṽ
h

¯

Prh,gsΩ
ẽ,ẽ
g Prg,hs

¯

˛

‚

2

“ op1q.

Combining these bounds with (C.3), we have

1

K2
V

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsPrh,gsẽrgs

¯2

˛

‚“ op1q. (C.4)

Now consider the second term on the RHS of (C.3). We have

1

K2
V

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsPrh,gsẽrgsṼ

J
rksPrk,gsẽrgs

˛

‚

“
1

K2
E

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsPrh,gsẽrgsṼ

J
rksPrk,gsẽrgs

˛

‚

2

ď
C

K2
E

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsPrh,gs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

Prg,ksṼrks

˛

‚

2

`
C

K2
E

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Prg,ksṼrks

˛

‚

2

,

where

1

K2
E

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsPrh,gs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

Prg,ksṼrks

˛

‚

2

ď
C

K2

ÿ

g,h,kPrGs3,g‰h‰k

E
´

Ṽ J
rhsPrh,gs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

Prg,ksṼrks

¯2

ď
C

K2

ÿ

g,hPrGs2,g‰h

trace
`

Prg,hsPrh,gs

˘

“ op1q,
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and

1

K2
E

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Prg,ksṼrks

˛

‚

2

“
1

K2
E

¨

˝

ÿ

h,kPrGs2,h‰k

Ṽ J
rhs

˜

ÿ

g‰h‰k

Prh,gsΩ
ẽ,ẽ
g Prg,ks

¸

Ṽrks

˛

‚

2

ď
C

K2

ÿ

h,kPrGs2,h‰k

E

˜

Ṽ J
rhs

˜

ÿ

g‰h‰k

Prh,gsΩ
ẽ,ẽ
g Prg,ks

¸

Ṽrks

¸2

ď
C

K2

ÿ

h,kPrGs2,h‰k

trace
´

`

pP ´ P̄ qΩẽpP ´ P̄ q
˘

rh,ks

`

pP ´ P̄ qΩẽpP ´ P̄ q
˘

rk,hs

¯

ď
C

K2
trace

`

pP ´ P̄ qΩẽpP ´ P̄ qpP ´ P̄ qΩẽpP ´ P̄ q
˘

“ op1q.

This implies that

1

K2
V

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsPrh,gsẽrgsṼ

J
rksPrk,gsẽrgs

˛

‚“ op1q. (C.5)

Combining (C.3)–(C.5), we have established (C.2), which further implies the desired result

that

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

V J
rhsPrh,gsergs

˛

‚

2

“
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2

` oP p1q.

Note that, by Lemma B.2 and the fact that WJQ “ 0, we can show

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

V J
rhsQrh,gsergs

˛

‚

2

“
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q

in the same manner by replacing P by Q.
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Next, we note that

1

K

ÿ

g,hPrGs2,g‰h

`

V J
rhsPrh,gsergs

˘ `

V J
rgsPrg,hserhs

˘

“
1

K

ÿ

g,hPrGs2,g‰h

¨

˚

˚

˚

˝

Ṽ J
rhsPrh,gsẽrgs

looooomooooon

U
p1q

gh

´ pWrhsγ̂Ṽ q
JPrh,gsẽrgs

loooooooooomoooooooooon

U
p2q

gh

´ Ṽ J
rhsPrh,gspWrgsγ̂ẽq

looooooooomooooooooon

U
p3q

gh

` pWrhsγ̂Ṽ q
JPrh,gspWrgsγ̂ẽq

loooooooooooooomoooooooooooooon

U
p4q

gh

˛

‹

‹

‹

‚

ˆ

¨

˚

˚

˚

˝

Ṽ J
rgsPrg,hsẽrhs

looooomooooon

U
p1q

hg

´ pWrgsγ̂Ṽ q
JPrg,hsẽrhs

loooooooooomoooooooooon

U
p2q

hg

´ Ṽ J
rgsPrg,hspWrhsγ̂ẽq

looooooooomooooooooon

U
p3q

hg

` pWrgsγ̂Ṽ q
JPrg,hspWrhsγ̂ẽq

loooooooooooooomoooooooooooooon

U
p4q

hg

˛

‹

‹

‹

‚

,

and by using a similar argument as in the proof for (C.1), we have

1

K

ÿ

g,hPrGs2,g‰h

U
p1q,2
gh “

1

K

ÿ

g,hPrGs2,g‰h

U
p1q,2
hg “ OP p1q,

1

K

ÿ

g,hPrGs2,g‰h

U
p2q,2
gh “

1

K

ÿ

g,hPrGs2,g‰h

U
p2q,2
hg “ oP p1q,

1

K

ÿ

g,hPrGs2,g‰h

U
p3q,2
gh “

1

K

ÿ

g,hPrGs2,g‰h

U
p3q,2
hg “ oP p1q,

1

K

ÿ

g,hPrGs2,g‰h

U
p4q,2
gh “

1

K

ÿ

g,hPrGs2,g‰h

U
p4q,2
hg “ oP p1q.

Then by repeatedly applying Cauchy-Schwarz inequality, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

ÿ

g,hPrGs2,g‰h

U
ps1q

gh U
ps2q

hg

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝

1

K

ÿ

g,hPrGs2,g‰h

U
ps1q,2
gh

˛

‚

1{2 ¨

˝

1

K

ÿ

g,hPrGs2,g‰h

U
ps2q,2
gh

˛

‚

1{2

“ oP p1q

for s1 ‰ 1 or s2 ‰ 1, whence

1

K

ÿ

g,hPrGs2,g‰h

`

V J
rhsPrh,gsergs

˘ `

V J
rgsPrg,hserhs

˘

“
1

K

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsPrh,gsẽrgs

¯ ´

Ṽ J
rgsPrg,hsẽrhs

¯

` oP p1q.
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Next, we note that

V

¨

˝

1

K

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsPrh,gsẽrgs

¯ ´

Ṽ J
rgsPrg,hsẽrhs

¯

˛

‚

“
1

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsPrh,gsẽrgs

¯ ´

Ṽ J
rgsPrg,hsẽrhs

¯

´
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsPrh,gsẽrgs

¯ ´

Ṽ J
rgsPrg,hsẽrhs

¯

˛

‚

2

ď
C

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´

Prg,hs

´

ẽrhsṼ
J

rhs ´ Ωẽ,Ṽ
h

¯

Prh,gs

´

ẽrgsṼ
J

rgs ´ Ωẽ,Ṽ
g

¯¯

˛

‚

2

`
C

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´

Prg,hsΩ
ẽ,Ṽ
h Prh,gs

´

ẽrgsṼ
J

rgs ´ Ωẽ,Ṽ
g

¯¯

˛

‚

2

`
C

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´´

ẽrhsṼ
J

rhs ´ Ωẽ,Ṽ
h

¯

Prh,gsΩ
ẽ,Ṽ
g Prg,hs

¯

˛

‚

2

“ op1q,

where the last equality holds because

1

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´

Prg,hs

´

ẽrhsṼ
J

rhs ´ Ωẽ,Ṽ
h

¯

Prh,gs

´

ẽrgsṼ
J

rgs ´ Ωẽ,Ṽ
g

¯¯

˛

‚

2

ď
C

K2

ÿ

g,hPrGs2,g‰h

E
´

trace
´

Prg,hs

´

ẽrhsṼ
J

rhs ´ Ωẽ,Ṽ
h

¯

Prh,gs

´

ẽrgsṼ
J

rgs ´ Ωẽ,Ṽ
g

¯¯¯2

ď
C

K2

ÿ

g,hPrGs2,g‰h

trace
´

Prg,hsE
´

ẽrhsṼ
J

rhs ´ Ωẽ,Ṽ
h

¯ ´

Ṽrhsẽ
J
rhs ´ ΩṼ ,ẽ

h

¯

Prh,gs

¯

ˆ trace
´

Prh,gsE
´

ẽrgsṼ
J

rgs ´ Ωẽ,Ṽ
g

¯ ´

Ṽrgsẽ
J
rgs ´ ΩṼ ,ẽ

g

¯

Prg,hs

¯

ď
C

K2

ÿ

g,hPrGs2,g‰h

trace
`

Prg,hsPrh,gs

˘

“ op1q,
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and

1

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´

Prg,hsΩ
ẽ,Ṽ
h Prh,gs

´

ẽrgsṼ
J

rgs ´ Ωẽ,Ṽ
g

¯¯

˛

‚

2

“
1

K2
E

¨

˝

ÿ

gPrGs

trace

˜˜

ÿ

h‰g

Prg,hsΩ
ẽ,Ṽ
h Prh,gs

¸

´

ẽrgsṼ
J

rgs ´ Ωẽ,Ṽ
g

¯

¸

˛

‚

2

“
1

K2

ÿ

gPrGs

E

˜

trace

˜˜

ÿ

h‰g

Prg,hsΩ
ẽ,Ṽ
h Prh,gs

¸

´

ẽrgsṼ
J

rgs ´ Ωẽ,Ṽ
g

¯

¸¸2

ď
1

K2

ÿ

gPrGs

trace

˜˜

ÿ

h‰g

Prg,hsΩ
ẽ,Ṽ
h Prh,gs

¸ ˜

ÿ

k‰g

Prg,ksΩ
Ṽ ,ẽ
k Prk,gs

¸¸

ˆ trace
´

E
´

ẽrgsṼ
J

rgs ´ Ωẽ,Ṽ
g

¯ ´

Ṽrgsẽ
J
rgs ´ ΩṼ ,ẽ

g

¯¯

ď
C

K2

ÿ

g,h,kPrGs2,h‰g,k‰g

trace
´

Prg,hsΩ
ẽ,Ṽ
h Prh,gsPrg,ksΩ

Ṽ ,ẽ
k Prk,gs

¯

ď
C

K2

ÿ

g,h,kPrGs2,h‰g,k‰g

´

trace
´

Prk,gsPrg,hsΩ
ẽ,Ṽ
h ΩṼ ,ẽ

h Prh,gsPrg,ks

¯¯1{2

ˆ

´

trace
´

Prh,gsPrg,ksΩ
Ṽ ,ẽ
k Ωẽ,Ṽ

k Prk,gsPrg,hs

¯¯1{2

ď
C

K2

ÿ

g,h,kPrGs2,h‰g,k‰g

trace
`

Prk,gsPrg,hsPrh,gsPrg,ks

˘

ď
C

K2

ÿ

g,hPrGs2,g‰h

trace
`

Prg,hsPrh,gs

˘

“ op1q,

and, following the same argument,

1

K2
E

¨

˝

ÿ

g,hPrGs2,g‰h

trace
´´

ẽrhsṼ
J

rhs ´ Ωẽ,Ṽ
h

¯

Prh,gsΩ
ẽ,Ṽ
g Prg,hs

¯

˛

‚

2

“ op1q.

This implies that

1

K

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsPrh,gsẽrgs

¯ ´

Ṽ J
rgsPrg,hsẽrhs

¯

25



“
1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsPrh,gsẽrgs

¯ ´

Ṽ J
rgsPrg,hsẽrhs

¯

` oP p1q.

Note also that we can replace P by Q, as in the proof for (C.1) and (C.2), and this concludes

the proof for the first result.

For the second result, we focus on the case when ũ “ Ṽ and ṽ “ ẽ. Recall that

Q “ MW pP ´ P̄ qMW “ P ´ P̄ ` PW P̄ ` P̄PW ´ PW P̄PW ,

which implies that

Qrh,gs “ Prh,gs ` PW,rh,gsPrg,gs ` Prh,hsPW,rh,gs ´
ÿ

kPrGs

PW,rh,ksPrk,ksPW,rk,gs, g ‰ h.

Therefore, we have

1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsQrh,gsẽrgs

¯2

“
1

K

ÿ

g,hPrGs2,g‰h

E

¨

˝Ṽ J
rhs

¨

˝Prh,gs ` PW,rh,gsPrg,gs ` Prh,hsPW,rh,gs ´
ÿ

kPrGs

PW,rh,ksPrk,ksPW,rk,gs

˛

‚ẽrgs

˛

‚

2

,

where

1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsPW,rh,gsPrg,gsẽrgs

¯2

ď
C

K

ÿ

g,hPrGs2,g‰h

trace
`

PW,rg,hsPW,rh,gs

˘

“ op1q,

since dw is fixed,

1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsPrg,gsPW,rg,hsẽrgs

¯2

“ op1q

26



by the same argument as above, and

1

K

ÿ

g,hPrGs2,g‰h

E

¨

˝Ṽ J
rhs

¨

˝

ÿ

kPrGs

PW,rh,ksPrk,ksPW,rk,gs

˛

‚ẽrgs

˛

‚

2

ď
C

K

ÿ

g,hPrGs2,g‰h

trace
´

`

PW P̄PW

˘

rg,hs

`

PW P̄PW

˘

rh,gs

¯

ď
C

K
trace

`

PW P̄PWPW P̄PW

˘

“ op1q.

It follows that

1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

2

“
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2

` op1q.

Similarly, we can show that

1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsPrh,gsẽrgs

¯ ´

Ṽ J
rgsPrg,hsẽrhs

¯

“
1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsQrh,gsẽrgs

¯ ´

Ṽ J
rgsQrg,hsẽrhs

¯

` op1q.

This concludes the proof.

C.5 Proof of Lemma B.5

We prove each result in turn. To begin with, we note that

Σ “ V

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs

˛

‚` V

¨

˝

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚,

27



where

V

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs

˛

‚“ E
´

Π̂Jẽ
¯

ě
1

C
Π̂JΠ̂ ě

1

C
ΠJΠ,

and

E

¨

˝

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚

2

“
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsPrg,hsẽrhs

¯2

`
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsPrg,hsẽrhs

¯ ´

Ṽ J
rhsPrh,gsẽrgs

¯

“
1

2

ÿ

g,hPrGs2,g‰h

E
”´

Ṽ J
rhsPrh,gsẽrgs

¯

`

´

Ṽ J
rgsPrg,hsẽrhs

¯ı2

“
1

2

ÿ

g,hPrGs2,g‰h

E

»

—

–

ˆ

ẽrgs Ṽrgs

˙

¨

˚

˝

0ngˆnh
Prg,hs

Prg,hs 0ngˆnh

˛

‹

‚

¨

˚

˝

ẽrhs

Ṽrhs

˛

‹

‚

fi

ffi

fl

2

ě
1

2C

ÿ

g,hPrGs2,g‰h

trace

»

—

–

¨

˚

˝

0ngˆnh
Prg,hs

Prg,hs 0ngˆnh

˛

‹

‚

¨

˚

˝

0nhˆng Prh,gs

Prh,gs 0nhˆng

˛

‹

‚

fi

ffi

fl

“
1

C

ÿ

g,hPrGs2,g‰h

trace
“

Prg,hsPrh,gs

‰

“
1

C

ÿ

gPrGs

trace
“

Prg,gs ´ P 2
rg,gs

‰

ě
1

C

ÿ

gPrGs

`

1 ´ λmaxpPrg,gsq
˘

trace
“

Prg,gs

‰

ě
1

C
K.

These two lower bounds imply the desired result that

Σ ě pΠJΠ ` Kq{C.
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Next, we note that

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

“
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Π̃J
rhsQrh,gsẽrgs

˛

‚

2

`
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

2

`
2

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Π̃J
rksQrk,gsẽrgs

˛

‚. (C.6)

For the first term on the RHS of (C.6), we have

E
1

Σ

¨

˝

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Π̃J
rhsQrh,gsẽrgs

˛

‚

2

´
ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Π̃J
rhsQrh,gsẽrgs

˛

‚

2˛

‚“ 0,

and by Assumption 3

V

¨

˝

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Π̃J
rhsQrh,gsẽrgs

˛

‚

2˛

‚

“
1

Σ2
V

¨

˝

ÿ

gPrGs

`

Π̄J
rgsẽrgs

˘2

˛

‚

ď
1

Σ2

ÿ

gPrGs

E
`

Π̄J
rgsẽrgs

˘4

ď
C

Σ2

ÿ

gPrGs

`

Π̄J
rgsΠ̄rgs

˘2

ď
Cmax1ďgďG

›

›Π̄rgs

›

›

2

2
Π̄JΠ̄

pΠJΠ ` Kq
2

“ op1q.
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Therefore, we have

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Π̃J
rhsQrh,gsẽrgs

˛

‚

2

“
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Π̃J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q. (C.7)

For the second term on the RHS of (C.6), by Lemma B.4 and the fact that K{Σ “ Op1q,

we have

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

2

“
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q. (C.8)

For the last term on the RHS of (C.6), we have

E
1

Σ

ÿ

gPrGs

¨

˝

ÿ

kPrGs,k‰g

Π̃J
rksQrk,gsẽrgs

˛

‚

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚“ 0,

and

V

¨

˝

1

Σ

ÿ

gPrGs

¨

˝

ÿ

kPrGs,k‰g

Π̃J
rksQrk,gsẽrgs

˛

‚

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

˛

‚

“
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̄J
rgsẽrgsṼ

J
rhsQrh,gsẽrgs

˛

‚

2

ď
C

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̄J
rgs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

Qrg,hsṼrhs

˛

‚

2

`
C

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̄J
rgsΩ

ẽ,ẽ
g Qrg,hsṼrhs

˛

‚

2

,

where

1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̄J
rgs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

Qrg,hsṼrhs

˛

‚

2
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ď
C

Σ2

ÿ

g,hPrGs2,g‰h

E
´

Π̄J
rgs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

Qrg,hsṼrhs

¯2

ď
Cmax1ďgďG

›

›Π̄rgs

›

›

2

2

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrg,hsQrh,gs

˘

“ op1q,

and

1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̄J
rgsΩ

ẽ,ẽ
g Qrg,hsṼrhs

˛

‚

2

“
1

Σ2
E

´

Π̄JΩẽpQ ´ Q̄qṼ
¯2

ď
CΠ̄JΠ̄

pΠJΠ ` Kq
2

“ op1q.

Therefore, we have

2

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Π̃J
rksQrk,gsẽrgs

˛

‚“ oP p1q. (C.9)

Combining (C.6)–(C.9), we have the desired result that

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

“
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Π̃J
rhsQrh,gsẽrgs

˛

‚

2

`
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q

“
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Π̃J
rhsQrh,gsẽrgs

˛

‚

2

`
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q

“
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q.
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Next, we note that

1

Σ

¨

˝

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsergs

˛

‚

2

´
ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2˛

‚

“
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsWrgsγ̂ẽ

˛

‚

2

(C.10)

´
2

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsWrgsγ̂ẽ

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsẽrgs

˛

‚. (C.11)

For the first term on the RHS of (C.10), we have

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsWrgsγ̂ẽ

˛

‚

2

ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2
ˆ

1

Σ

ÿ

gPrGs

›

›

›

›

›

›

ÿ

hPrGs,h‰g

Qrg,hsX̃rhs

›

›

›

›

›

›

2

2

ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2
ˆ
C

Σ

ÿ

gPrGs

¨

˝

›

›Π̄rgs

›

›

2

2
`

›

›

›

›

›

›

ÿ

hPrGs,h‰g

Qrg,hsṼrhs

›

›

›

›

›

›

2

2

˛

‚

“ oP p1q,

by Lemma B.1. For the second term on the RHS of (C.10), we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsWrgsγ̂ẽ

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsẽrgs

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsWrgsγ̂ẽ

˛

‚

2˛

‚

1{2

ˆ

¨

˝

1

Σ

ÿ

gPrGs

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsẽrgs

˛

‚

2˛

‚

1{2

“ oP p1q.
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Combining the two bounds above, we have the desired result that

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsergs

˛

‚

2

“
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q.

Next, we note that

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

2

“
1

Σ

ÿ

gPrGs

`

Π̄J
rgsXrgs

˘2

loooooooooomoooooooooon

R1

`
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsXrgs

˛

‚

2

loooooooooooooooooooomoooooooooooooooooooon

R2

` 2 ˆ
1

Σ

ÿ

g,hPrGs2,g‰h

Π̄J
rgsXrgsṼ

J
rhsQrh,gsXrgs

looooooooooooooooooooomooooooooooooooooooooon

R3

. (C.12)

For R1, we have

R1 “
1

Σ

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘2
`

1

Σ

ÿ

gPrGs

`

Π̄J
rgsVrgs

˘2
`

2

Σ

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘ `

Π̄J
rgsVrgs

˘

“
1

Σ

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘2
`

1

Σ

ÿ

gPrGs

´

Π̄J
rgsṼrgs

¯2

`
2

Σ

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘

´

Π̄J
rgsṼrgs

¯

` oP p1q

“
1

Σ

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘2
`

1

Σ

ÿ

gPrGs

E
´

Π̄J
rgsṼrgs

¯2

` oP p1q,

where the second equality holds by using Vrgs “ Ṽrgs ´Wrgsγ̂Ṽ and Lemma B.1, and the last

equality holds because

V

¨

˝

1

Σ

ÿ

gPrGs

´

Π̄J
rgsṼrgs

¯2

˛

‚
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ď
1

Σ2

ÿ

gPrGs

E
´

Π̄J
rgsṼrgs

¯4

ď
C

Σ2

ÿ

gPrGs

`

Π̄J
rgsΠ̄rgs

˘2

ď
CmaxgPrGs

›

›Π̄rgs

›

›

2

2
Π̄JΠ̄

pΠJΠ ` Kq2

“ op1q

and

V

¨

˝

1

Σ

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘

´

Π̄J
rgsṼrgs

¯

˛

‚

“
1

Σ2

ÿ

gPrGs

E
´

`

Π̄J
rgsΠrgs

˘

´

Π̄J
rgsṼrgs

¯¯2

ď
C

Σ2

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘2 `

Π̄J
rgsΠ̄rgs

˘

ď
CmaxgPrGs

›

›Π̄rgs

›

›

2

2
Π̄JΠ̄

pΠJΠ ` Kq2

“ op1q.

For R2, we have

R2 “
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

2

loooooooooooooooooooomoooooooooooooooooooon

R2,1

`
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsVrgs

˛

‚

2

loooooooooooooooooooomoooooooooooooooooooon

R2,2

` 2 ˆ
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsVrgs

˛

‚

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

R2,3

.
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For R2,1, we have

V pR2,1q ď
C

Σ2
V

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsQrh,gsΠrgs

¯2

˛

‚

`
C

Σ2
V

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

´

Ṽ J
rhsQrh,gsΠrgs

¯ ´

Ṽ J
rksQrk,gsΠrgs

¯

˛

‚,

where

1

Σ2
V

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsQrh,gsΠrgs

¯2

˛

‚

“
1

Σ2
V

¨

˝

ÿ

hPrGs

Ṽ J
rhs

¨

˝

ÿ

gPrGs,g‰h

Qrh,gsΠrgsΠ
J
rgsQrg,hs

˛

‚Ṽrhs

˛

‚

2

ď
C

Σ2

ÿ

hPrGs

›

›

›

›

›

›

ÿ

gPrGs,g‰h

Qrh,gsΠrgsΠ
J
rgsQrg,hs

›

›

›

›

›

›

2

op

ď
C

Σ2

ÿ

hPrGs

trace

¨

˝

ÿ

gPrGs,g‰h

Qrh,gsΠrgsΠ
J
rgsQrg,hs

˛

‚

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrh,gsQrg,hs

˘

“ op1q,

and

1

Σ2
V

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

´

Ṽ J
rhsQrh,gsΠrgs

¯ ´

Ṽ J
rksQrk,gsΠrgs

¯

˛

‚

“
1

Σ2
E

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

´

Ṽ J
rhsQrh,gsΠrgs

¯ ´

Ṽ J
rksQrk,gsΠrgs

¯

˛

‚

2

ď
C

Σ2

ÿ

g,h,kPrGs3,g‰h‰k

E
´´

Ṽ J
rhsQrh,gsΠrgs

¯ ´

Ṽ J
rksQrk,gsΠrgs

¯¯2
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ď
C

Σ2

ÿ

g,h,kPrGs3,g‰h‰k

trace
`

Qrh,gsQrg,hs

˘

tr
`

Qrk,gsQrg,ks

˘

“ op1q.

This implies that

R2,1 “
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

2

` oP p1q.

For R2,2, since K{Σ “ Op1q, by Lemma B.6, we have

R2,2 “
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

2

` oP p1q.

For R2,3, we have

R2,3 “
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsṼrgs

˛

‚` oP p1q

“ oP p1q,

where the second equality holds because

E
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsṼrgs

˛

‚“ 0,

V

¨

˝

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsṼrgs

˛

‚

˛

‚

ď
C

Σ2
V

¨

˝

ÿ

g,hPrGs2,g‰h

Ṽ J
rhsQrh,gsΠrgsṼ

J
rhsQrh,gsṼrgs

˛

‚
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`
C

Σ2
V

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsQrh,gsΠrgsṼ

J
rksQrk,gsṼrgs

˛

‚,

where

1

Σ2
V

¨

˝

ÿ

g,hPrGs2,g‰h

Ṽ J
rhsQrh,gsΠrgsṼ

J
rhsQrh,gsṼrgs

˛

‚

ď
C

Σ2
V

¨

˝

ÿ

g,hPrGs2,g‰h

ΠJ
rgsQrg,hsΩ

Ṽ ,Ṽ
h Qrh,gsṼrgs

˛

‚

2

`
C

Σ2
V

¨

˝

ÿ

g,hPrGs2,g‰h

ΠJ
rgsQrg,hspṼrhsṼ

J
rhs ´ ΩṼ ,Ṽ

h qQrh,gsṼrgs

˛

‚

2

ď
C

Σ2

ÿ

gPrGs

›

›

›

›

›

›

¨

˝

ÿ

hPrGs,h‰g

Qrg,hsΩ
Ṽ ,Ṽ
h Qrh,gs

˛

‚Πrgs

›

›

›

›

›

›

2

2

`
C

Σ2

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsQrh,gsΠrgsṼ

J
rhsQrh,gsṼrgs

¯2

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrh,gsQrg,hs

˘

“ op1q,

and

1

Σ2
V

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsQrh,gsΠrgsṼ

J
rksQrk,gsṼrgs

˛

‚

“
1

Σ2
E

¨

˝

ÿ

g,h,kPrGs3,g‰h‰k

Ṽ J
rhsQrh,gsΠrgsṼ

J
rksQrk,gsṼrgs

˛

‚

2

ď
C

Σ2

ÿ

g,h,kPrGs3,g‰h‰k

E
´

Ṽ J
rhsQrh,gsΠrgsṼ

J
rksQrk,gsṼrgs

¯2

ď
C

Σ2

ÿ

g,h,kPrGs3,g‰h‰k

trace
`

Qrh,gsQrg,hs

˘

trace
`

Qrk,gsQrg,ks

˘

“ op1q.

37



Combining the results above, we have

R2 “
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

2

`
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

2

` oP p1q.

For R3, we have

R3 “
1

Σ

ÿ

g,hPrGs2,g‰h

Π̄J
rgsΠrgsṼ

J
rhsQrh,gsΠrgs

looooooooooooooooooooomooooooooooooooooooooon

R3,1

`
1

Σ

ÿ

g,hPrGs2,g‰h

Π̄J
rgsΠrgsṼ

J
rhsQrh,gsVrgs

loooooooooooooooooooomoooooooooooooooooooon

R3,2

`
1

Σ

ÿ

g,hPrGs2,g‰h

Π̄J
rgsVrgsṼ

J
rhsQrh,gsΠrgs

loooooooooooooooooooomoooooooooooooooooooon

R3,3

`
1

Σ

ÿ

g,hPrGs2,g‰h

Π̄J
rgsVrgsṼ

J
rhsQrh,gsVrgs

loooooooooooooooooooomoooooooooooooooooooon

R3,4

.

For R3,1, it has mean zero and

V pR3,1q “
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̄J
rgsΠrgsṼ

J
rhsQrh,gsΠrgs

˛

‚

2

ď
C

Σ2

ÿ

hPrGs

›

›

›

›

›

›

ÿ

gPrGs,g‰h

Qrh,gsΠrgsΠ̄
J
rgsΠrgs

›

›

›

›

›

›

2

2

ď
C

Σ2

ÿ

hPrGs

›

›

›

›

›

›

ÿ

gPrGs

Qrh,gsΠrgsΠ̄
J
rgsΠrgs

›

›

›

›

›

›

2

2

`
C

Σ2

ÿ

hPrGs

›

›Qrh,hsΠrhsΠ̄
J
rhsΠrhs

›

›

2

2

ď
C

Σ2

ÿ

hPrGs

›

›

›

›

›

›

ÿ

gPrGs

Qrh,gsΠrgsΠ̄
J
rgsΠrgs

›

›

›

›

›

›

2

2

` op1q

“ op1q,
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where the last equality holds because

1

Σ2

ÿ

hPrGs

›

›

›

›

›

›

ÿ

gPrGs

Qrh,gsΠrgsΠ̄
J
rgsΠrgs

›

›

›

›

›

›

2

2

“
1

Σ2

ÿ

g,g1PrGs2

pΠrgsΠ̄
J
rgsΠrgsq

J

¨

˝

ÿ

hPrGs

Qrg,hsQrh,g1s

˛

‚Πrg1sΠ̄
J
rg1sΠrg1s

ď
1

Σ2

ÿ

gPrGs

›

›ΠrgsΠ̄
J
rgsΠrgs

›

›

2

2

“ op1q.

For R3,2, we have

R3,2 “
1

Σ

ÿ

g,hPrGs2,g‰h

Π̄J
rgsΠrgsṼ

J
rhsQrh,gsṼrgs ` oP p1q,

where the first term has mean zero and

V

¨

˝

1

Σ

ÿ

g,hPrGs2,g‰h

Π̄J
rgsΠrgsṼ

J
rhsQrh,gsṼrgs

˛

‚

“
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̄J
rgsΠrgsṼ

J
rhsQrh,gsṼrgs

˛

‚

2

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

E
´

Π̄J
rgsΠrgsṼ

J
rhsQrh,gsṼrgs

¯2

ď
CmaxgPrGs

›

›Π̄rgs

›

›

2

2

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrh,gsQrg,hs

˘

“ op1q.

By using the same argument, we also have R3,3 “ oP p1q. For R3,4, we have

R3,4 “
1

Σ

ÿ

g,hPrGs2,g‰h

Π̄J
rgsṼrgsṼ

J
rhsQrh,gsṼrgs ` oP p1q,
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where the first term has mean zero and

V

¨

˝

1

Σ

ÿ

g,hPrGs2,g‰h

Π̄J
rgsṼrgsṼ

J
rhsQrh,gsṼrgs

˛

‚

ď
C

Σ2
V

¨

˝

ÿ

g,hPrGs2,g‰h

Π̄J
rgsΩ

Ṽ ,Ṽ
g Qrg,hsṼrhs

˛

‚

`
C

Σ2
V

¨

˝

ÿ

g,hPrGs2,g‰h

Π̄J
rgspṼrgsṼ

J
rgs ´ ΩṼ ,Ṽ

g qQrg,hsṼrhs

˛

‚

ď
C

Σ2
E

´

Π̄JΩṼ pQ ´ Q̄qṼ
¯2

`
C

Σ2

ÿ

g,hPrGs2,g‰h

E
´

Π̄J
rgsṼrgsṼ

J
rhsQrh,gsṼrgs

¯2

ď
CΠ̄JΠ̄

Σ2
`
CmaxgPrGs

›

›Π̄rgs

›

›

2

2

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrh,gsQrg,hs

˘

“ op1q.

Combining the results above, we have R3 “ oP p1q.

Therefore, by combining (C.12) with the calculations about terms R1 to R3, we have

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

2

“
1

Σ

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘2
`

1

Σ

ÿ

gPrGs

E
´

Π̄J
rgsṼrgs

¯2

`
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

2

`
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

2

` oP p1q.

Finally, we note that

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsergs

˛

‚
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“
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsΠrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsergs

˛

‚

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

R4

`
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsVrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsergs

˛

‚

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

R5

. (C.13)

For R4, we have

R4 “
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsΠrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsẽrgs

˛

‚` oP p1q

“
1

Σ

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘ `

Π̄J
rgsẽrgs

˘

loooooooooooooooomoooooooooooooooon

R4,1

`
1

Σ

ÿ

g,hPrGs2,g‰h

`

Π̄J
rgsΠrgs

˘

´

Ṽ J
rhsQrh,gsẽrgs

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

R4,2

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsQrh,gsΠrgs

¯

`

Π̄J
rgsẽrgs

˘

loooooooooooooooooooooooomoooooooooooooooooooooooon

R4,3

`
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsẽrgs

˛

‚

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

R4,4

`oP p1q.

By using a similar argument as in the proof for R1, we have R4,1 “ oP p1q. For R4,2, it has

mean zero and

V pR4,2q “
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

`

Π̄J
rgsΠrgs

˘

´

Ṽ J
rhsQrh,gsẽrgs

¯

˛

‚

2

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

`

Π̄J
rgsΠrgs

˘2 E
´

Ṽ J
rhsQrh,gsẽrgs

¯2
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ď
CmaxgPrGs

›

›Π̄rgs

›

›

2

2

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrh,gsQrg,hs

˘

“ op1q.

Therefore, we have R4,2 “ oP p1q. Using the same argument, we also have R4,3 “ oP p1q. In

addition, by using a similar argument as in the proof for R2,3, we have R4,4 “ oP p1q, which

implies R4 “ oP p1q.

For R5, we have

R5 “
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsṼrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsẽrgs

˛

‚` oP p1q

“
1

Σ

ÿ

gPrGs

´

Π̄J
rgsṼrgs

¯

`

Π̄J
rgsẽrgs

˘

loooooooooooooooomoooooooooooooooon

R5,1

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̄J
rgsṼrgs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

R5,2

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rhsQrh,gsṼrgs

¯

`

Π̄J
rgsẽrgs

˘

loooooooooooooooooooooooomoooooooooooooooooooooooon

R5,3

`
1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsẽrgs

˛

‚

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

R5,4

`oP p1q.

For R5,1, by using a similar argument as in the proof for R1, we have

R5,1 “
1

Σ

ÿ

gPrGs

E
´

Π̄J
rgsṼrgs

¯

`

Π̄J
rgsẽrgs

˘

` oP p1q.

In addition, by using a similar argument as in the proof for R3,4, we have R5,2 “ oP p1q and
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R5,3 “ oP p1q. Lastly, by using a similar argument as in the proof for R2,2, we have

R5,4 “
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsẽrgs

˛

‚` oP p1q.

Combining the results with (C.13), we have

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsergs

˛

‚

“
1

Σ

ÿ

gPrGs

E
´

Π̄J
rgsṼrgs

¯

`

Π̄J
rgsẽrgs

˘

`
1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsẽrgs

˛

‚` oP p1q.

This concludes the proof.

C.6 Proof of Lemma B.6

For the first result in Lemma B.6, we note that

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsẽrhs

¯ ´

Π̃J
rhsQrh,gsẽrgs

¯

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

R6

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rgsQrg,hsẽrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

R7

` 2 ˆ
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

R8

.
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For R6, it has mean zero and

V pR6q “
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsẽrhs

¯ ´

Π̃J
rhsQrh,gsẽrgs

¯

˛

‚

2

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

E
´

Π̃J
rgsQrg,hsẽrhsΠ̃

J
rhsQrh,gsẽrgs

¯2

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrg,hsQrh,gs

˘

“ op1q,

whence R6 “ oP p1q. For R7, since K{Σ “ Op1q, by an application of Lemma B.4, we have

R7 “
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsẽrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

` oP p1q.

For R8, we have

V pR8q “
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsẽrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

˛

‚

2

ď
C

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̃J
rgsQrg,hs

´

ẽrhsṼ
J

rhs ´ Ωẽ,Ṽ
h

¯

Qrh,gsẽrgs

˛

‚

2

`
C

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̃J
rgsQrg,hsΩ

ẽ,Ṽ
h Qrh,gsẽrgs

˛

‚

2

“ op1q,

where the last equality holds because

1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̃J
rgsQrg,hs

´

ẽrhsṼ
J

rhs ´ Ωẽ,Ṽ
h

¯

Qrh,gsẽrgs

˛

‚

2

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

E
´

Π̃J
rgsQrg,hs

´

ẽrhsṼ
J

rhs ´ Ωẽ,Ṽ
h

¯

Qrh,gsẽrgs

¯2
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ď
C

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrg,hsQrh,gs

˘

“ op1q,

and

1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Π̃J
rgsQrg,hsΩ

ẽ,Ṽ
h Qrh,gsẽrgs

˛

‚

2

“
1

Σ2
E

¨

˝

ÿ

gPrGs

Π̃J
rgs

˜

ÿ

h‰g

Qrg,hsΩ
ẽ,Ṽ
h Qrh,gs

¸

ẽrgs

˛

‚

2

ď
C

Σ2

ÿ

gPrGs

trace

˜˜

ÿ

h‰g

Qrg,hsΩ
ẽ,Ṽ
h Qrh,gs

¸ ˜

ÿ

k‰g

Qrg,ksΩ
Ṽ ,ẽ
k Qrk,gs

¸¸

ď
C

Σ2
trace

´

pQ ´ Q̄qΩẽ,Ṽ
pQ ´ Q̄q

2ΩṼ ,ẽ
pQ ´ Q̄q

¯

“ op1q.

It follows that R8 “ oP p1q. Combining the results above, we have

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsẽrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

` oP p1q.

Next, we turn to the second result in Lemma B.6. We note that

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hserhs

¯ ´

X̃J
rhsQrh,gsergs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsWrhsγ̂ẽ

¯ ´

X̃J
rhsQrh,gsWrgsγ̂ẽ

¯

´
2

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsWrhsγ̂ẽ

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

,
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where

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsWrhsγ̂ẽ

¯ ´

X̃J
rhsQrh,gsWrgsγ̂ẽ

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsWrhsγ̂ẽ

¯2

ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2
ˆ

1

Σ

ÿ

g,hPrGs2,g‰h

›

›

›
Qrh,gsX̃rgs

›

›

›

2

2

“ oP p1q,

by Lemma B.1, and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsWrhsγ̂ẽ

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsWrhsγ̂ẽ

¯2

˛

‚

1{2

ˆ

¨

˝

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rhsQrh,gsẽrgs

¯2

˛

‚

1{2

“ oP p1q.

Therefore, we have

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hserhs

¯ ´

X̃J
rhsQrh,gsergs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

` oP p1q

“
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

` oP p1q.
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Next, we turn to the third result in Lemma B.6. Note that

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsXrgs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsVrhs

¯ ´

X̃J
rhsQrh,gsVrgs

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R9

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsΠrhs

¯ ´

X̃J
rhsQrh,gsΠrgs

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R10

` 2 ˆ
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsΠrhs

¯ ´

X̃J
rhsQrh,gsVrgs

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R11

.

By using the same argument as in the proof above, we have

R9 “
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsṼrhs

¯ ´

X̃J
rhsQrh,gsṼrgs

¯

` oP p1q.

For R10, we have

R10 “
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsΠrgs

¯

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Ṽ J
rhsQrh,gsΠrgs

¯

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

R10,1

` 2 ˆ
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsΠrhs

¯ ´

Ṽ J
rhsQrh,gsΠrgs

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R10,2

.

Note that

V pR10,1q “
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Ṽ J
rhsQrh,gsΠrgs

¯

˛

‚

2
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ď
C

Σ2

ÿ

g,hPrGs2,g‰h

E
´´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Ṽ J
rhsQrh,gsΠrgs

¯¯2

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrh,gsQrg,hs

˘

“ op1q,

and

V pR10,2q “
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsΠrhs

¯ ´

Ṽ J
rhsQrh,gsΠrgs

¯

˛

‚

2

ď
C

Σ2

ÿ

hPrGs

›

›

›

›

›

›

ÿ

gPrGs,g‰h

Qrh,gsΠrgsΠ̃
J
rgsQrg,hsΠrhs

›

›

›

›

›

›

2

2

ď
C

Σ2

ÿ

hPrGs

›

›

›

›

›

›

ÿ

gPrGs,g‰h

Qrh,gsΠrgsΠ̃
J
rgsQrg,hs

›

›

›

›

›

›

2

F

ď
C

Σ2

ÿ

hPrGs

ÿ

g,g1PrGs2,g,g1‰h

trace
´

Qrh,gsΠrgsΠ̃
J
rgsQrg,hsQrh,g1sΠ̃rg1sΠ

J
rg1sQrg1,hs

¯

ď
C

Σ2

ÿ

hPrGs

ÿ

g,g1PrGs2,g,g1‰h

´

Π̃J
rgsQrg,hsQrh,g1sΠ̃rg1s

¯2

`
C

Σ2

ÿ

hPrGs

ÿ

g,g1PrGs2,g,g1‰h

`

ΠJ
rgsQrg,hsQrh,g1sΠrg1s

˘2

ď
C

Σ2

ÿ

hPrGs

ÿ

g,g1PrGs2,g,g1‰h

trace
`

Qrh,gsQrg,hs

˘

trace
`

Qrh,g1sQrg1,hs

˘

“ op1q.

Therefore, we have

R10 “
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsΠrgs

¯

` oP p1q.
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For R11, we have

R11 “
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsΠrhs

¯ ´

X̃J
rhsQrh,gsṼrgs

¯

` oP p1q

“
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsṼrgs

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R11,1

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsΠrhs

¯ ´

Ṽ J
rhsQrh,gsṼrgs

¯

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

R11,2

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsṼrgs

¯

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

R11,3

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Ṽ J
rhsQrh,gsṼrgs

¯

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

R11,4

.

By using a similar argument as in the proof for R10,1 and R10,2, we have R11,1 “ oP p1q and

R11,2 “ oP p1q. For R11,3, we have

V pR11,3q “
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsṼrgs

¯

˛

‚

2

ď
C

Σ2

ÿ

gPrGs

›

›

›

›

›

›

ÿ

hPrGs,h‰g

Qrg,hsΠrhsΠ̃
J
rhsQrh,gs

›

›

›

›

›

›

2

F

ď
C

Σ2

ÿ

gPrGs

ÿ

h,h1PrGs2,h,h1‰g

´

Π̃J
rhsQrh,gsQrg,h1sΠ̃rh1s

¯2

`
C

Σ2

ÿ

gPrGs

ÿ

h,h1PrGs2,h,h1‰g

`

ΠJ
rhsQrh,gsQrg,h1sΠrh1s

˘2

ď
C

Σ2

ÿ

gPrGs

ÿ

h,h1PrGs2,h,h1‰g

trace
`

Qrg,hsQrh,gs

˘

trace
`

Qrg,h1sQrh1,gs

˘

“ op1q,
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and thus

R11,3 “
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsṼrgs

¯

` oP p1q.

For R11,4, we have

V pR11,4q ď V

¨

˝

1

Σ

ÿ

g,hPrGs2,g‰h

Ṽ J
rhsQrh,gsΩ

Ṽ ,Ṽ
g Qrg,hsΠrhs

˛

‚

` V

¨

˝

1

Σ

ÿ

g,hPrGs2,g‰h

Ṽ J
rhsQrh,gspṼrgsṼ

J
rgs ´ ΩṼ ,Ṽ

g qQrg,hsΠrhs

˛

‚,

where

V

¨

˝

1

Σ

ÿ

g,hPrGs2,g‰h

Ṽ J
rhsQrh,gsΩ

Ṽ ,Ṽ
g Qrg,hsΠrhs

˛

‚

“
1

Σ2
E

¨

˝

ÿ

hPrGs

Ṽ J
rhs

¨

˝

ÿ

gPrGs,g‰h

Qrh,gsΩ
Ṽ ,Ṽ
g Qrg,hs

˛

‚Πrhs

˛

‚

2

ď
CΠJΠ

pΠJΠ ` Kq2

“ op1q,

and

V

¨

˝

1

Σ

ÿ

g,hPrGs2,g‰h

Ṽ J
rhsQrh,gspṼrgsṼ

J
rgs ´ ΩṼ ,Ṽ

g qQrg,hsΠrhs

˛

‚

“
1

Σ2
E

¨

˝

ÿ

g,hPrGs2,g‰h

Ṽ J
rhsQrh,gspṼrgsṼ

J
rgs ´ ΩṼ ,Ṽ

g qQrg,hsΠrhs

˛

‚

2

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsQrh,gsṼrgsṼ

J
rgsQrg,hsΠrhs

¯2

ď
C

Σ2

ÿ

g,hPrGs2,g‰h

trace
`

Qrh,gsQrg,hs

˘

50



“ op1q.

It follows that R11,4 “ oP p1q, whence

R11 “
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsṼrgs

¯

` oP p1q.

Combining the results above, we have

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsXrgs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsṼrhs

¯ ´

X̃J
rhsQrh,gsṼrgs

¯

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsΠrgs

¯

`
2

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsṼrgs

¯

` oP p1q.

Finally, for the last result of Lemma B.6, we note that

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsergs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsVrhs

¯ ´

X̃J
rhsQrh,gsergs

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R12

`
1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsΠrhs

¯ ´

X̃J
rhsQrh,gsergs

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R13

.

By using the same argument as in the proof for R9, we have

R12 “
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsṼrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

` oP p1q.
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In addition, by using the same argument as in the proof for R11, we have

R13 “
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsẽrgs

¯

` oP p1q.

It follows that

1

Σ

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsergs

¯

“
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsṼrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

`
1

Σ

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsẽrgs

¯

` oP p1q.

This concludes the proof.

C.7 Proof of Lemma B.7

Throughout the proof we denote ∆́ “ β́ ´ β, and note that ∆́ “ oP p1q by assumption. We

divide the proof into four steps.

Step 1: Consistency of Ώ. Note that 1{C ď λminpΩ{nq ď λminpΩ{nq ď C by Assumption

1, and thus it suffices to show that

1

n
Ώ ´

1

n
Ω “ oP p1q.

Let

Ω̃ “
ÿ

gPrGs

`

zJ
rgsẽrgs

˘ `

zJ
rgsẽrgs

˘J
and Ω̄ “

ÿ

gPrGs

`

zJ
rgsergs

˘ `

zJ
rgsergs

˘J
.
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We aim to show that

1

n
Ω̃ ´

1

n
Ω “ oP p1q, (C.14)

1

n
Ω̄ ´

1

n
Ω̃ “ oP p1q, (C.15)

1

n
Ώ ´

1

n
Ω̄ “ oP p1q. (C.16)

For (C.14), consider its pj, kq-th element for 1 ď j, k ď dz, given by

1

n

ÿ

gPrGs

“

zJ
rgs,j ẽrgsẽ

J
rgszrgs,k ´ E

`

zJ
rgs,j ẽrgsẽ

J
rgszrgs,k

˘‰

,

where we use zrgs,j (zrgs,k) to denote the j-th (k-th) column of zrgs; note that it has mean zero

and

V

¨

˝

1

n

ÿ

gPrGs

“

zJ
rgs,j ẽrgsẽ

J
rgszrgs,k ´ E

`

zJ
rgs,j ẽrgsẽ

J
rgszrgs,k

˘‰

˛

‚

ď
1

n2

ÿ

gPrGs

E
`

zJ
rgs,j ẽrgsẽ

J
rgszrgs,k

˘2

ď
1

n2

ÿ

gPrGs

zJ
rgs,jzrgs,jz

J
rgs,kzrgs,kE

`

ẽJ
rgsẽrgs

˘2

ď
CmaxiPIg ,gPrGs }zi,g}

2
2

n
ˆ

1

n

ÿ

gPrGs

zJ
rgs,jzrgs,j

“ op1q

by Assumption 1, and the result follows since dz is fixed.

For (C.15), its pj, kq-th element can be written as

1

n

ÿ

gPrGs

`

zJ
rgs,jergse

J
rgszrgs,k ´ zJ

rgs,j ẽrgsẽ
J
rgszrgs,k

˘

“
1

n

ÿ

gPrGs

pzJ
rgs,jWrgsγ̂ẽqpzJ

rgs,kWrgsγ̂ẽq

53



´
1

n

ÿ

gPrGs

pzJ
rgs,jWrgsγ̂ẽqpzJ

rgs,kẽrgsq

´
1

n

ÿ

gPrGs

pzJ
rgs,kWrgsγ̂ẽqpzJ

rgs,j ẽrgsq.

We have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

gPrGs

pzJ
rgs,jWrgsγ̂ẽqpzJ

rgs,kWrgsγ̂ẽq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

d

1

n

ÿ

gPrGs

pzJ
rgs,jWrgsγ̂ẽq2 ˆ

d

1

n

ÿ

gPrGs

pzJ
rgs,kWrgsγ̂ẽq2

ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2
ˆ

d

1

n

ÿ

gPrGs

zJ
rgs,jzrgs,j ˆ

d

1

n

ÿ

gPrGs

zJ
rgs,kzrgs,k

ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2
ˆ

g

f

f

f

evJ
j

¨

˝

1

n

ÿ

iPIg ,gPrGs

zi,gzJ
i,g

˛

‚vj ˆ

g

f

f

f

evJ
k

¨

˝

1

n

ÿ

iPIg ,gPrGs

zi,gzJ
i,g

˛

‚vk

“ oP p1q

by Assumption 1 and Lemma B.1, where we use vj (vk) to denote the dz-dimensional unit

vector with j-th (k-th) element one and other elements zero; we also have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

gPrGs

pzJ
rgs,jWrgsγ̂ẽqpzJ

rgs,kẽrgsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2
ˆ

d

1

n

ÿ

gPrGs

zJ
rgs,jzrgs,j ˆ

d

1

n

ÿ

gPrGs

zJ
rgs,kẽrgsẽ

J
rgs
zrgs,k

“ oP p1q,

and by using the same argument,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

gPrGs

pzJ
rgs,kWrgsγ̂ẽqpzJ

rgs,j ẽrgsq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q.
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For (C.16), its pj, kq-th element can be written as

1

n

ÿ

gPrGs

`

zJ
rgs,j érgsé

J
rgszrgs,k ´ zJ

rgs,jergse
J
rgszrgs,k

˘

“
∆́2

n

ÿ

gPrGs

pzJ
rgs,jXrgsqpzJ

rgs,kXrgsq

´
∆́

n

ÿ

gPrGs

pzJ
rgs,jXrgsqpzJ

rgs,kergsq

´
∆́

n

ÿ

gPrGs

pzJ
rgs,kXrgsqpzJ

rgs,jergsq,

and note that

1

n

ÿ

gPrGs

pzJ
rgs,jXrgsqpzJ

rgs,kXrgsq ď

d

1

n

ÿ

gPrGs

zJ
rgs,jzrgs,jX

J
rgs
Xrgs ˆ

d

1

n

ÿ

gPrGs

zJ
rgs,kzrgs,kX

J
rgs
Xrgs

“ OP p1q,

since maxgPrGs E
´

XJ
rgs
Xrgs

¯

“ Op1q by Lemma B.1; the other two terms can be handled

similarly.

Step 2: Consistency of Ψ́. By Assumption 2, we have

1

rn
zJX “

1

rn
zJΠ `

1

rn
zJV “

1

rn
zJΠ ` oP p1q, (C.17)

and note that

1

λn
Ân “

1

λn
An `

1

λn
pÂn ´ Anq

“
1

λn
An ` p

1

λn
Anq

1{2
pA´1{2

n ÂnA
´1{2
n ´ Idzqp

1

λn
Anq

1{2

“
1

λn
An ` oP p1q, (C.18)
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where λn “ λmaxpAnq. In addition, we have

1

p 1
rn
ΠJzqp 1

λn
Anqp 1

n
Ωqp 1

λn
Anqp 1

rn
zJΠq

ď C.

Therefore, we have

Ψ́

Ψ
“
XJzÂnΏÂnz

JX

ΠJzAnΩAnzJΠ
“

p 1
rn
XJzqp 1

λn
Ânqp 1

n
Ώqp 1

λn
Ânqp 1

rn
zJXq

p 1
rn
ΠJzqp 1

λn
Anqp 1

n
Ωqp 1

λn
Anqp 1

rn
zJΠq

“ 1 ` oP p1q

by Step 1.

Step 3: Consistency of Σ́. Define

Σ̄ “ E
´

Π̃J
pQ ´ Q̄qẽ

¯2

` E
´

Ṽ J
pQ ´ Q̄qẽ

¯2

,

and recall

Σ “ E
´

Π̂Jẽ
¯2

` E
´

Ṽ J
pP ´ P̄ qẽ

¯2

“ E
´

Π̃JQẽ
¯2

` E
´

Ṽ J
pP ´ P̄ qẽ

¯2

.

Using the notation }X}P,2 “ pE pX2qq
1{2

, we have

ˇ

ˇ

ˇ

ˇ

Σ̄ ´ Σ

Σ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›
Π̃JQẽ

›

›

›

2

P,2
´

›

›

›
Π̃JpQ ´ Q̄qẽ

›

›

›

2

P,2

Σ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›
Ṽ JpP ´ P̄ qẽ

›

›

›

2

P,2
´

›

›

›
Ṽ JpQ ´ Q̄qẽ

›

›

›

2

P,2

Σ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˚

˝

2
›

›

›
Π̃JQẽ

›

›

›

P,2

›

›

›
Π̃JQ̄ẽ

›

›

›

P,2
`

›

›

›
Π̃JQ̄ẽ

›

›

›

2

P,2

Σ

˛

‹

‚

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›
Ṽ JpP ´ P̄ qẽ

›

›

›

2

P,2
´

›

›

›
Ṽ JpQ ´ Q̄qẽ

›

›

›

2

P,2

Σ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˚

˝

2
›

›

›
Π̃JQẽ

›

›

›

P,2

›

›

›
Π̃JQ̄ẽ

›

›

›

P,2
`

›

›

›
Π̃JQ̄ẽ

›

›

›

2

P,2

ΠJΠ

˛

‹

‚

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›
Ṽ JpP ´ P̄ qẽ

›

›

›

2

P,2
´

›

›

›
Ṽ JpQ ´ Q̄qẽ

›

›

›

2

P,2

K

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ op1q,
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where the first inequality is by triangular inequality, the second inequality is by Cauchy-

Schwarz inequality, the third inequality is by Lemma B.5, and the last equality holds because

E
´

Π̃JQ̄ẽ
¯2

ď C
›

›Q̄
›

›

2

op
Π̃JΠ̃ “ opΠJΠq

by Lemma B.2, and

1

K
E

´

Ṽ J
pQ ´ Q̄qẽ

¯2

“
1

K

ÿ

g,hPrGs2,g‰h

E
„

´

Ṽ J
rgsQrg,hsẽrhs

¯2

`

´

Ṽ J
rgsQrg,hsẽrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

ȷ

“
1

K

ÿ

g,hPrGs2,g‰h

E
„

´

Ṽ J
rgsPrg,hsẽrhs

¯2

`

´

Ṽ J
rgsPrg,hsẽrhs

¯ ´

Ṽ J
rhsPrh,gsẽrgs

¯

ȷ

` op1q

“
1

K
E

´

Ṽ J
pP ´ P̄ qẽ

¯2

` op1q

by Lemma B.4. Therefore, we have

Σ̄

Σ
Ñ 1.

In addition, note that we can write

Σ̄ “
ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

`
ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

,

as in Chao et al. (2012), and thus

Σ́ ´ Σ̄

Σ̄
“

1

Σ̄

¨

˝

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

´
ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2˛

‚

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

R14

`
1

Σ̄

¨

˚

˝

ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hsẽrhs

¯ ´

X̃J
rhs
Qrh,gsẽrgs

¯

´
ř

g,hPrGs2,g‰h E
´

X̃J
rgs
Qrg,hsẽrhs

¯ ´

X̃J
rhs
Qrh,gsẽrgs

¯

˛

‹

‚

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

R15
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`
1

Σ̄

¨

˝

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsérgs

˛

‚

2

´
ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2˛

‚

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

R16

`
1

Σ̄

¨

˚

˝

ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hsérhs

¯ ´

X̃J
rhs
Qrh,gsérgs

¯

´
ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hsẽrhs

¯ ´

X̃J
rhs
Qrh,gsẽrgs

¯

˛

‹

‚

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

R17

.

Note also that, by Lemmas B.5 and B.6, we have R14 “ oP p1q and R15 “ oP p1q.

For R16, we have

R16 “
1

Σ̄

¨

˝

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsérgs

˛

‚

2

´
ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsergs

˛

‚

2˛

‚

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

R16,1

`
1

Σ̄

¨

˝

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsergs

˛

‚

2

´
ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2˛

‚

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

R16,2

.

For R16,1, we have

R16,1 “
∆́2

Σ̄

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

2

´
2∆́

Σ̄

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsergs

˛

‚.

By Lemma B.5, we have

1

Σ̄

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

2

“ OP p1q,
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since

1

Σ̄

ÿ

gPrGs

`

Π̄J
rgsΠrgs

˘2
ď
CΠ̄JΠ̄

Σ̄
“ Op1q,

1

Σ̄

ÿ

gPrGs

E
´

Π̄J
rgsṼrgs

¯2

ď
CΠ̄JΠ̄

Σ̄
“ Op1q,

1

Σ̄

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsΠrgs

˛

‚

2

ď
CΠJΠ

Σ̄
“ Op1q,

1

Σ̄

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

2

ď
C

Σ̄

ÿ

g,hPrGs2,g‰h

trace
`

Qrg,hsQrh,gs

˘

“ Op1q.

By the same lemma, we also have

1

Σ̄

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsergs

˛

‚“ OP p1q,

since

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ̄

ÿ

gPrGs

E
´

Π̄J
rgsṼrgs

¯

`

Π̄J
rgsẽrgs

˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
CΠ̄JΠ̄

Σ̄
“ Op1q

and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ̄

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsẽrgs

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

Σ̄

ÿ

g,hPrGs2,g‰h

trace
`

Qrg,hsQrh,gs

˘

“ Op1q.

It follows that R16,1 “ oP p1q, and since R16,2 “ oP p1q by Lemma B.5, we have R16 “

oP p1q.
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For R17, we have

R17 “
1

Σ̄

¨

˚

˝

ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hsérhs

¯ ´

X̃J
rhs
Qrh,gsérgs

¯

´
ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hserhs

¯ ´

X̃J
rhs
Qrh,gsergs

¯

˛

‹

‚

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

R17,1

`
1

Σ̄

¨

˚

˝

ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hserhs

¯ ´

X̃J
rhs
Qrh,gsergs

¯

´
ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hsẽrhs

¯ ´

X̃J
rhs
Qrh,gsẽrgs

¯

˛

‹

‚

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

R17,2

.

For R17,1, we have

R17,1 “
∆̂2

Σ̄

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsXrgs

¯

´
2∆̂

Σ̄

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsergs

¯

.

By Lemma B.6, we have

1

Σ̄

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsXrgs

¯

“ OP p1q,

since

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ̄

ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsṼrhs

¯ ´

X̃J
rhsQrh,gsṼrgs

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

Σ̄

ÿ

g,hPrGs2,g‰h

trace
`

Qrh,gsQrg,hs

˘

“ Op1q,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ̄

ÿ

g,hPrGs2,g‰h

´

Π̃J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsΠrgs

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
CΠJΠ

Σ̄
“ Op1q,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ̄

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsṼrgs

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
CΠJΠ

Σ̄
“ Op1q.
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By the same lemma, we also have

1

Σ̄

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsergs

¯

“ OP p1q,

since

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ̄

ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsṼrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

Σ̄

ÿ

g,hPrGs2,g‰h

trace
`

Qrh,gsQrg,hs

˘

“ Op1q,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Σ̄

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsΠrhs

¯ ´

Π̃J
rhsQrh,gsẽrgs

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
CΠJΠ

Σ̄
“ Op1q.

It follows that R17,1 “ oP p1q, and since R17,2 “ oP p1q by Lemma B.6, we have R17 “ oP p1q.

Combining the results above, we have

Σ́ ´ Σ̄

Σ̄
“ oP p1q,

and the desired result follows from Σ{Σ̄ Ñ 1.

Step 4: Consistency of Ύ. We have

Ύ ´ Υ

Υ
“ 2 ˆ

1

Υ

¨

˝

ÿ

g,hPrGs2,g‰h

`

ẽJ
rgsPrg,hsẽrhs

˘2
´

ÿ

g,hPrGs2,g‰h

E
`

ẽJ
rgsPrg,hsẽrhs

˘2

˛

‚

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

R18

` 2 ˆ
1

Υ

¨

˝

ÿ

g,hPrGs2,g‰h

`

eJ
rgsPrg,hserhs

˘2
´

ÿ

g,hPrGs2,g‰h

`

ẽJ
rgsPrg,hsẽrhs

˘2

˛

‚

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

R19

` 2 ˆ
1

Υ

¨

˝

ÿ

g,hPrGs2,g‰h

`

éJ
rgsPrg,hsérhs

˘2
´

ÿ

g,hPrGs2,g‰h

`

eJ
rgsPrg,hserhs

˘2

˛

‚

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

R20

,
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and note that

Υ “ V

¨

˝

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs

˛

‚

“ E

¨

˝

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs

˛

‚

2

“ 2
ÿ

g,hPrGs2,g‰h

E
`

ẽJ
rgsPrg,hsẽrhs

˘2

“ 2
ÿ

g,hPrGs2,g‰h

trace
”

Ωẽ,ẽ
g Prg,hsΩ

ẽ,ẽ
h Prh,gs

ı

ě
1

C

ÿ

g,hPrGs2,g‰h

trace
“

Prg,hsPrh,gs

‰

ě
1

C
K. (C.19)

By Lemma B.4, we have R18 “ oP p1q and R19 “ oP p1q. For R20, it can be written as

R20 “
1

Υ

ÿ

g,hPrGs2,g‰h

``

pérgs ´ ergsq
JPrg,hspérhs ´ erhsq ` eJ

rgsPrg,hspérhs ´ erhsq

`pérgs ´ ergsq
JPrg,hserhs ` eJ

rgsPrg,hserhs

˘2
´

`

eJ
rgsPrg,hserhs

˘2
¯

“ ∆́4
ˆ

1

Υ

ÿ

g,hPrGs2,g‰h

`

XJ
rgsPrg,hsXrhs

˘2

loooooooooooooooooomoooooooooooooooooon

R20,1

` ∆́2
ˆ

1

Υ

ÿ

g,hPrGs2,g‰h

`

eJ
rgsPrg,hsXrhs

˘2

looooooooooooooooomooooooooooooooooon

R20,2

` ∆́2
ˆ

1

Υ

ÿ

g,hPrGs2,g‰h

`

XJ
rgsPrg,hserhs

˘2

looooooooooooooooomooooooooooooooooon

R20,3

´ 4 ˆ ∆́3
ˆ

1

Υ

ÿ

g,hPrGs2,g‰h

`

XJ
rgsPrg,hsXrhs

˘ `

eJ
rgsPrg,hsXrhs

˘

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

R20,4
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` 2 ˆ ∆́2
ˆ

1

Υ

ÿ

g,hPrGs2,g‰h

`

XJ
rgsPrg,hsXrhs

˘ `

eJ
rgsPrg,hserhs

˘

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

R20,5

` 2 ˆ ∆́2
ˆ

1

Υ

ÿ

g,hPrGs2,g‰h

`

eJ
rgsPrg,hsXrhs

˘ `

XJ
rgsPrg,hserhs

˘

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

R20,6

´ 4 ˆ ∆́ ˆ
1

Υ

ÿ

g,hPrGs2,g‰h

`

eJ
rgsPrg,hsXrhs

˘ `

eJ
rgsPrg,hserhs

˘

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

R20,7

.

By using the same argument as in the proof of Lemma B.6, we can show that

R20,i “ OP p1q, i “ 1, . . . , 7,

whence R20 “ oP p1q. Combining the results above, we have

Ύ ´ Υ

Υ
“ oP p1q.

This concludes the proof.

C.8 Proof of Lemma B.8

We first introduce some notation. Denote

9Φ1 “ pXJzÂnz
JXq

´1
pXJzÂn

9ΩÂnz
JXqpXJzÂnz

JXq
´1,

9Ω “
ÿ

gPrGs

`

zJ
rgs 9ergs

˘ `

zJ
rgs 9ergs

˘J
,

where 9e “ Y ´ Xβ̂1, and denote ∆̂1 “ β̂1 ´ β. In addition, denote

:Φ2 “
`

XJ
pP ´ P̄ qX

˘´1 :Σ
`

XJ
pP ´ P̄ qX

˘´1
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:Σ “
ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gs:ergs

˛

‚

2

`
ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hs:erhs

¯ ´

X̃J
rhsQrh,gs:ergs

¯

,

where :e “ Y ´Xβ̂2, and denote ∆̂2 “ β̂2 ´ β. Finally, denote ω̃1 “ 9Φ
1{2
2 {

´

9Φ
1{2
1 ` :Φ

1{2
2

¯

and

ω̃2 “ 9Φ
1{2
1 {

´

9Φ
1{2
1 ` :Φ

1{2
2

¯

.

We divide the proof into four steps. In the first step, we show that if Assumptions 1-3

hold, then

β̂1
p

ÝÑ β, 9Φ1 “ oP p1q, and pβ̂1 ´ βq{ 9Φ
1{2
1 “ OP p1q.

In the second step, we show that if Assumptions 1 and 3 hold and ΠJΠ{
?
K Ñ 8, we

have

pβ̂2 ´ βq
2ΠJΠ{

?
K “ oP p1q and :Φ2Π

JΠ{
?
K “ oP p1q.

In the third step, we show that if Assumptions 1-3 hold and ΠJΠ{
?
K “ Op1q, then

β̂2 ´ β “ OP p1q and 1{:Φ
1{2
2 “ OP p1q.

In the last step, we show that if Assumptions 1, 21 and 3 hold, then

β̂1 ´ β “ OP p1q and 1{ 9Φ
1{2
1 “ OP p1q.

Consequently, if Assumptions 1-3 hold and ΠJΠ{
?
K Ñ 8, by the results in Steps 1 and

2, we have

pβ̂ ´ βq
2ΠJΠ{

?
K ď

˜

:Φ
1{2
2

9Φ
1{2
1 ` :Φ

1{2
2

¸2

ˆ pβ̂1 ´ βq
2ΠJΠ{

?
K

`

˜

9Φ
1{2
1

9Φ
1{2
1 ` :Φ

1{2
2

¸2

ˆ pβ̂2 ´ βq
2ΠJΠ{

?
K
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ď
pβ̂1 ´ βq2

9Φ1

:Φ2Π
JΠ{

?
K ` oP p1q “ oP p1q.

If Assumptions 1-3 hold and ΠJΠ{
?
K “ Op1q, then by results in Steps 1 and 3, we have

pβ̂ ´ βq
2ΠJΠ{

?
K ď

˜

:Φ
1{2
2

9Φ
1{2
1 ` :Φ

1{2
2

¸2

ˆ pβ̂1 ´ βq
2ΠJΠ{

?
K

`

˜

9Φ
1{2
1

9Φ
1{2
1 ` :Φ

1{2
2

¸2

ˆ pβ̂2 ´ βq
2ΠJΠ{

?
K

“ pβ̂1 ´ βq
2

ˆ OP p1q ` 9Φ1 ˆ OP p1q “ oP p1q.

If Assumptions 1, 21 and 3 hold and ΠJΠ{
?
K Ñ 8, by results in Steps 2 and 4, we have

pβ̂ ´ βq
2ΠJΠ{

?
K ď

˜

:Φ
1{2
2

9Φ
1{2
1 ` :Φ

1{2
2

¸2

ˆ pβ̂1 ´ βq
2ΠJΠ{

?
K

`

˜

9Φ
1{2
1

9Φ
1{2
1 ` :Φ

1{2
2

¸2

ˆ pβ̂2 ´ βq
2ΠJΠ{

?
K

ď
pβ̂1 ´ βq2

9Φ1

:Φ2Π
JΠ{

?
K ` oP p1q “ oP p1q.

Therefore, we have established the desired results. Next, we focus on proving results in

Steps 1–4.

Step 1: Assumptions 1-3 hold

We have

β̂1 ´ β “
XJzÂnz

Je

XJzÂnzJX
.

By (C.17) and (C.18), we have

XJzÂnz
JX

ΠJzAnzJΠ
“

p 1
rn
XJzqp 1

λn
Ânqp 1

rn
zJXq

p 1
rn
ΠJzqp 1

λn
Anqp 1

rn
zJΠq

“ 1 ` oP p1q. (C.20)
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In addition, we have

XJzÂnz
Je

?
ΠJzAnΩAnzJΠ

“
p 1
rn
XJzqp 1

λn
Ânqp 1?

n
zJeq

b

p 1
rn
ΠJzqp 1

λn
Anqp 1

n
Ωqp 1

λn
Anqp 1

rn
zJΠq

“
p 1
rn
ΠJzqp 1

λn
Anqp 1?

n
zJẽq ` oP p1q

b

p 1
rn
ΠJzqp 1

λn
Anqp 1

n
Ωqp 1

λn
Anqp 1

rn
zJΠq

“
ΠJzAnz

Jẽ
?
ΠJzAnΩAnzJΠ

` opp1q,

where the last equality holds because by Assumptions 1 and 2,

ˆ

1

rn
ΠJz

˙ ˆ

1

λn
An

˙ ˆ

1

n
Ω

˙ ˆ

1

λn
An

˙ ˆ

1

rn
zJΠ

˙

ě λmin

ˆˆ

1

λn
An

˙ ˆ

1

n
Ω

˙ ˆ

1

λn
An

˙˙

ě
1

C
.

Combining the above results and recalling

Φ1 “ pΠJzAnz
JΠq

´1
pΠJzAnΩAnz

JΠqpΠJzAnz
JΠq

´1,

we have

β̂1 ´ β
?
Φ1

“
ΠJzAnz

JΠ

XJzÂnzJX
ˆ

XJzÂnz
Je

?
ΠJzAnΩAnzJΠ

“ OP p1q,

and

Φ1 “
ΠJzAnΩAnz

JΠ

pΠJzAnzJΠq
2 “ O

ˆ

n

r2n

˙

“ op1q, (C.21)

which further imply

β̂1 ´ β “ OP p
a

Φ1q “ oP p1q.

Given the consistency of β̂1, we can apply Lemma B.7 to show that 9Φ1{Φ1
p

ÝÑ 1, which
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further implies that

9Φ1
p

ÝÑ 0 and
pβ̂1 ´ βq2

9Φ1

“ OP p1q.

Step 2: Assumptions 1 and 3 hold, and ΠJΠ{
?
K Ñ 8

We have

β̂2 ´ β “
XJpP ´ P̄ qe

XJpP ´ P̄ qX
,

and

XJ
pP ´ P̄ qe “ Π̂Jẽ ` Ṽ J

pP ´ P̄ qẽ ` Ṽ JPW P̄ ẽ ` Ṽ JP̄PW ẽ ´ Ṽ JPW P̄PW ẽ, (C.22)

where we use the fact that PWP “ PPW “ 0nˆn since Z “ MW Z̃. For the third term on

the RHS of (C.22), as Σ ě CpΠJΠ ` Kq by Lemma B.5, we have

Ṽ JPW P̄ ẽ “ OP p1q “ oP p
?
Σq

by Lemma B.3. Following the similar argument, we can show that

Ṽ JP̄PW ẽ “ oP p
?
Σq and Ṽ JPW P̄PW ẽ “ oP p

?
Σq.

Then, by (C.22), we have

XJ
pP ´ P̄ qe “ Π̂Jẽ ` Ṽ J

pP ´ P̄ qẽ ` oP p
?
Σq. (C.23)

In addition, we have

XJ
pP ´ P̄ qX “ ΠJ

pP ´ P̄ qΠ ` 2Π̂JṼ ` Ṽ JMW pP ´ P̄ qMW Ṽ
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“ ΠJ
pP ´ P̄ qΠ ` 2Π̂JṼ ` Ṽ J

pP ´ P̄ qṼ ` 2Ṽ JPW pP ´ P̄ qṼ ` Ṽ JPW pP ´ P̄ qPW Ṽ

“ ΠJ
pP ´ P̄ qΠ ` 2Π̂JṼ ` Ṽ J

pP ´ P̄ qṼ ´ 2Ṽ JPW P̄ Ṽ ´ Ṽ JPW P̄PW Ṽ

“ ΠJ
pP ´ P̄ qΠ ` 2Π̂JṼ ` Ṽ J

pP ´ P̄ qṼ ` oP p
?
Σq

“ ΠJ
pP ´ P̄ qΠ ` OP p

?
Σq, (C.24)

where the second last equality is by

Ṽ JPW P̄ Ṽ “ oP p
?
Σq and Ṽ JPW P̄PW Ṽ “ oP p

?
Σq

due to the same argument above, and the last equality holds because

V
´

Π̂JṼ
¯

“ OpΠJΠq “ OpΣq

and

V
´

Ṽ J
pP ´ P̄ qṼ

¯

ď C||P ´ P̄ ||
2
F ď CK “ OpΣq.

Combining (C.23) and (C.24), we have

β̂2 ´ β “
XJpP ´ P̄ qe

XJpP ´ P̄ qX
“

Π̂Jẽ ` Ṽ JpP ´ P̄ qẽ ` oP p
?
Σq

ΠJpP ´ P̄ qΠ ` OP p
?
Σq

.

In addition, we have

Φ2 “
Σ

`

ΠJpP ´ P̄ qΠ
˘2 “ Op

ΠJΠ ` K

pΠJΠq
2 q “ op1q (C.25)

because as ΠJΠ{
?
K Ñ 8, we have ΠJΠ Ñ 8; this also implies that

XJpP ´ P̄ qX

ΠJpP ´ P̄ qΠ
“

ΠJpP ´ P̄ qΠ ` OP p
?
Σq

ΠJpP ´ P̄ qΠ
“ 1 ` oP p1q. (C.26)
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Therefore, we have

|β̂2 ´ β|
?
Φ2

“

´

Π̂Jẽ ` Ṽ JpP ´ P̄ qẽ
¯

{
?
Σ ` oP p1q

1 ` OP

`
?
Σ{|ΠJpP ´ P̄ qΠ|

˘ “ OP p1q,

where we use the fact that

Π̂Jẽ “ OP p
?
ΠJΠq “ OP p

?
Σq

and

Ṽ J
pP ´ P̄ qẽ “ OP p

?
Kq “ OP p

?
Σq.

This also implies

pβ̂2 ´ βq
2ΠJΠ{

?
K “ OP pΦ2Π

JΠ{
?
Kq

“ OP

ˆ

ΠJΠ ` K

pΠJΠq
2 ˆ

ΠJΠ
?
K

˙

“ OP

ˆ

1
?
K

`

?
K

ΠJΠ

˙

“ oP p1q.

Given the consistency of β̂2, we can apply Lemma B.7 to show that :Φ2{Φ2
p

ÝÑ 1, which

further implies that

:Φ2Π
JΠ{

?
K “ oP p1q.

Step 3: Assumptions 1 and 3 hold, and ΠJΠ{
?
K is bounded

Note that ΠJpP ´ P̄ qΠ{
?
K is bounded in this case. In addition, let

ΓṼ ,Ṽ “
ÿ

g,hPrGs2,g‰h

E
„

´

Ṽ J
rgsPrg,hsṼrhs

¯2

`

´

Ṽ J
rgsPrg,hsṼrhs

¯ ´

Ṽ J
rhsPrh,gsṼrgs

¯

ȷ

,
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ΓṼ ,ẽ “
ÿ

g,hPrGs2,g‰h

E
„

´

Ṽ J
rgsPrg,hsẽrhs

¯2

`

´

Ṽ J
rgsPrg,hsẽrhs

¯ ´

Ṽ J
rhsPrh,gsẽrgs

¯

ȷ

,

Λ “
ÿ

g,hPrGs2,g‰h

E
”´

Ṽ J
rgsPrg,hsẽrhs

¯ ´

Ṽ J
rgsPrg,hsṼrhs

¯

`

´

Ṽ J
rgsPrg,hsẽrhs

¯ ´

Ṽ J
rhsPrh,gsṼrgs

¯ı

,

then by Assumption 3.4 we have 1{C ď ΓṼ ,Ṽ {K ď C, 1{C ď ΓṼ ,ẽ{K ď C and |Λ|{
a

ΓṼ ,Ṽ ΓṼ ,ẽ ď

C ă 1. We shall argue along the subsequence where ΠJpP ´ P̄ qΠ{
?
K Ñ γ P ℜ and

1

K

¨

˚

˝

ΓṼ ,Ṽ Λ

Λ ΓṼ ,ẽ

˛

‹

‚

Ñ

¨

˚

˝

Γ11 Γ12

Γ21 Γ22

˛

‹

‚

” Γ,

where Γ ą 0 (in the matrix sense) by ΓṼ ,Ṽ {K ě 1{C ą 0, ΓṼ ,ẽ{K ě 1{C ą 0 and

|Λ{K|{

b

pΓṼ ,Ṽ {KqpΓṼ ,ẽ{Kq ď C ă 1.

By Assumption 3, we have

¨

˚

˝

1?
K
Ṽ JpP ´ P̄ qṼ

1?
K
Ṽ JpP ´ P̄ qẽ

˛

‹

‚

ù N

¨

˚

˝

¨

˚

˝

0

0

˛

‹

‚

,

¨

˚

˝

Γ11 Γ12

Γ21 Γ22

˛

‹

‚

˛

‹

‚

,

which can be proved by following the same steps as in the proof of Lemma B.10.

In addition, by (C.24), we have

1
?
K
XJ

pP ´ P̄ qX “
1

?
K

ΠJ
pP ´ P̄ qΠ `

2
?
K

Π̂JṼ

`
1

?
K
Ṽ J

pP ´ P̄ qṼ ´
2

?
K
Ṽ JPW P̄ Ṽ ´

1
?
K
Ṽ JPW P̄PW Ṽ

ù N pγ,Γ11q,

where we use the facts that

V
ˆ

1
?
K

Π̂Ṽ

˙

“ O

ˆ

ΠJΠ

K

˙

“ op1q,
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2
?
K
Ṽ JPW P̄ Ṽ “ OP

´

1{
?
K

¯

“ oP p1q, and
1

?
K
Ṽ JPW P̄PW Ṽ “ OP

´

1{
?
K

¯

“ oP p1q.

This implies

1
1?
K
XJpP ´ P̄ qX

“ OP p1q. (C.27)

Similarly, by (C.22), we have

1
?
K
XJ

pP ´ P̄ qe “
1

?
K

Π̂Jẽ `
1

?
K
Ṽ J

pP ´ P̄ qẽ

`
1

?
K
Ṽ JPW P̄ ẽ `

1
?
K
Ṽ JP̄PW ẽ ´

1
?
K
Ṽ JPW P̄PW ẽ

“
1

?
K
Ṽ J

pP ´ P̄ qẽ ` oP p1q “ OP p1q,

which further implies

∆̂2 “
XJpP ´ P̄ qe

XJpP ´ P̄ qX
“

1?
K
XJpP ´ P̄ qe

1?
K
XJpP ´ P̄ qX

“ OP p1q.

Next, we analyze :Φ2. Note that

1

K
:Σ “

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gs:ergs

˛

‚

2

`
1

K

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hs:erhs

¯ ´

X̃J
rhsQrh,gs:ergs

¯

,

(C.28)

where :e “ Y ´ Xβ̂2. For the first term on the RHS of (C.28), we have

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gs:ergs

˛

‚

2

“
1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

loooooooooooooooooooomoooooooooooooooooooon

R21
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`
1

K

¨

˝

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsergs

˛

‚

2

´
ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2˛

‚

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

R22

`
1

K

¨

˝

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gs:ergs

˛

‚

2

´
ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsergs

˛

‚

2˛

‚

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

R23

.

By the fact that ΠJΠ{K “ op1q, we have

1{C ď Σ{K ď C

for some constant C P p0,8q, so that we can apply Lemma B.5 to obtain

R21 “
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q,

“
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

2

` oP p1q,

and R22 “ oP p1q. For R23, we have

R23 “ ∆̂2
2 ˆ

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

2

looooooooooooooooooooomooooooooooooooooooooon

R23,1

´ 2 ˆ ∆̂2 ˆ
1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsXrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

X̃J
rksQrk,gsergs

˛

‚

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

R23,2

.

By Lemma B.5 and the fact that ΠJΠ{K “ op1q, we have

R23,1 “
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

2

` oP p1q,
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R23,2 “
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsẽrgs

˛

‚` oP p1q.

It follows that

1

K

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gs:ergs

˛

‚

2

“
1

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsẽrgs

˛

‚

2

`
∆̂2

2

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

2

´
2∆̂2

K

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsQrh,gsṼrgs

˛

‚

¨

˝

ÿ

kPrGs,k‰g

Ṽ J
rksQrk,gsẽrgs

˛

‚` oP p1q, (C.29)

since ∆̂2 “ OP p1q. For the second term on the RHS of (C.28), we have

1

K

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hs:erhs

¯ ´

X̃J
rhsQrh,gs:ergs

¯

“
1

K

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsẽrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R24

`
1

K

¨

˚

˝

ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hserhs

¯ ´

X̃J
rhs
Qrh,gsergs

¯

´
ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hsẽrhs

¯ ´

X̃J
rhs
Qrh,gsẽrgs

¯

˛

‹

‚

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

R25

`
1

K

¨

˚

˝

ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hs:erhs

¯ ´

X̃J
rhs
Qrh,gs:ergs

¯

´
ř

g,hPrGs2,g‰h

´

X̃J
rgs
Qrg,hserhs

¯ ´

X̃J
rhs
Qrh,gsergs

¯

˛

‹

‚

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

R26

.

73



By Lemma B.6 and the fact that ΠJΠ{K “ op1q, we have

R24 “
1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsẽrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

` oP p1q,

and R25 “ oP p1q. For R26, we have

R26 “ ∆̂2
ˆ

1

K

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsXrgs

¯

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

R26,1

´ 2 ˆ ∆̂ ˆ
1

K

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsXrhs

¯ ´

X̃J
rhsQrh,gsergs

¯

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R26,2

.

By Lemma B.6 and the fact that ΠJΠ{K “ op1q, we have

R26,1 “
1

K

ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsṼrhs

¯ ´

X̃J
rhsQrh,gsṼrgs

¯

` oP p1q

“
1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsṼrhs

¯ ´

Ṽ J
rhsQrh,gsṼrgs

¯

` oP p1q,

and

R26,2 “
1

K

ÿ

g,hPrGs2,g‰h

E
´

X̃J
rgsQrg,hsṼrhs

¯ ´

X̃J
rhsQrh,gsẽrgs

¯

` oP p1q

“
1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsṼrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

` oP p1q.

It follows that

1

K

ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hs:erhs

¯ ´

X̃J
rhsQrh,gs:ergs

¯

“
1

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsẽrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

74



`
∆̂2

2

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsṼrhs

¯ ´

Ṽ J
rhsQrh,gsṼrgs

¯

´
2∆̂2

K

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsṼrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

` oP p1q. (C.30)

since ∆̂2 “ OP p1q. Combining (C.28)–(C.30), we obtain that

1

K
:Σ “

∆̂2
2

K

¨

˝

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsQrh,gsṼrgs

¯2

`
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsṼrhs

¯ ´

Ṽ J
rhsQrh,gsṼrgs

¯

˛

‚

`
1

K

¨

˝

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsQrh,gsẽrgs

¯2

`
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsẽrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

˛

‚

´
2∆̂2

K

»

–

ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rhsQrh,gsṼrgs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

`
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsQrg,hsṼrhs

¯ ´

Ṽ J
rhsQrh,gsẽrgs

¯

fi

fl ` oP p1q

“
∆̂2

2

K
E

´

Ṽ J
pQ ´ Q̄qṼ

¯2

´
2∆̂2

K
E

´

Ṽ J
pQ ´ Q̄qṼ

¯ ´

Ṽ J
pQ ´ Q̄qẽ

¯

`
1

K
E

´

Ṽ J
pQ ´ Q̄qẽ

¯2

` oP p1q.

In addition, by Lemma B.4, we have

1

K
E

´

Ṽ J
pQ ´ Q̄qṼ

¯2

“
1

K
E

´

Ṽ J
pP ´ P̄ qṼ

¯2

` op1q “ Γ11 ` op1q,

1

K
E

´

Ṽ J
pQ ´ Q̄qẽ

¯2

“
1

K
E

´

Ṽ J
pP ´ P̄ qẽ

¯2

` op1q “ Γ22 ` op1q,

1

K
E

´

Ṽ J
pQ ´ Q̄qṼ

¯ ´

Ṽ J
pQ ´ Q̄qẽ

¯

“
1

K
E

´

Ṽ J
pP ´ P̄ qṼ

¯ ´

Ṽ J
pP ´ P̄ qẽ

¯

` op1q “ Γ12 ` op1q.

Combining the above results, we have

1

K
:Σ “ ∆̂2

2Γ11 ´ 2∆̂2Γ12 ` Γ22 ` oP p1q. (C.31)
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It follows that

:Φ2 “

ˆ

1
?
K
XJ

pP ´ P̄ qX

˙´2 ˆ

1

K
:Σ

˙

“
p 1?

K
XJpP ´ P̄ qeq2

p 1?
K
XJpP ´ P̄ qXq4

ˆ Γ11 ´ 2
p 1?

K
XJpP ´ P̄ qeq

p 1?
K
XJpP ´ P̄ qXq3

ˆ Γ12

`
1

p 1?
K
XJpP ´ P̄ qXq2

ˆ Γ22 ` oP p1q

ù Φ̄2,

where the second equality is by (C.27) and (C.31), and Φ̄2 is defined as

Φ̄2 “
η2
Ṽ ,ẽ

pηṼ ,Ṽ ` γq4
Γ11 ´

2ηṼ ,ẽ

pηṼ ,Ṽ ` γq3
Γ12 `

1

pηṼ ,Ṽ ` γq2
Γ22

“
1

pηṼ ,Ṽ ` γq4

´

η2
Ṽ ,ẽ

Γ11 ´ 2ηṼ ,ẽpηṼ ,Ṽ ` γqΓ12 ` pηṼ ,Ṽ ` γq
2Γ22

¯

“

¨

˚

˝

´ηṼ ,ẽ

ηṼ ,Ṽ ` γ

˛

‹

‚

J ¨

˚

˝

Γ11 Γ12

Γ21 Γ22

˛

‹

‚

¨

˚

˝

´ηṼ ,ẽ

ηṼ ,Ṽ ` γ

˛

‹

‚

pηṼ ,Ṽ ` γq4
,

with

¨

˚

˝

ηṼ ,Ṽ

ηṼ ,ẽ

˛

‹

‚

d
“ N

¨

˚

˝

¨

˚

˝

0

0

˛

‹

‚

,

¨

˚

˝

Γ11 Γ12

Γ21 Γ22

˛

‹

‚

˛

‹

‚

.

Note that

¨

˚

˝

´ηṼ ,ẽ

ηṼ ,Ṽ ` γ

˛

‹

‚

J ¨

˚

˝

Γ11 Γ12

Γ21 Γ22

˛

‹

‚

¨

˚

˝

´ηṼ ,ẽ

ηṼ ,Ṽ ` γ

˛

‹

‚

ě 0,

and the equality holds if and only if ηṼ ,ẽ “ 0 and ηṼ ,Ṽ ` γ “ 0, which has probability

zero since ηṼ ,ẽ has a non-degenerate normal distribution and similarly for ηṼ ,Ṽ . In addition,
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the denominator of Φ̄2 is positive with probability one. Therefore, we have Φ̄2 ą 0 with

probability one, which implies that

1{:Φ
1{2
2 “ OP p1q.

Step 4: Assumptions 1, 21 and 3 hold

By Assumptions 21.1 and 21.2, we can argue along the subsequence where zJΠ{
?
n Ñ π P

ℜdz ,

1

n

¨

˚

˝

ř

gPrGs
E

´

zJ
rgs
ẽrgs

¯ ´

zJ
rgs
ẽrgs

¯J
ř

gPrGs
E

´

zJ
rgs
ẽrgs

¯ ´

zJ
rgs
Ṽrgs

¯J

ř

gPrGs
E

´

zJ
rgs
Ṽrgs

¯ ´

zJ
rgs
ẽrgs

¯J
ř

gPrGs
E

´

zJ
rgs
Ṽrgs

¯ ´

zJ
rgs
Ṽrgs

¯J

˛

‹

‚

Ñ

¨

˚

˝

Ωẽ,ẽ
z Ωẽ,Ṽ

z

ΩṼ ,ẽ
z ΩṼ ,Ṽ

z

˛

‹

‚

ą 0,

and

1

n

ÿ

gPrGs

`

zJ
rgsΠrgs

˘ `

zJ
rgsΠrgs

˘J
Ñ ΩΠ,Π

z ě 0,

in the matrix sense. In addition, note that since Assumption 2.1 holds, An{λn has eigenvalues

bounded and bounded away from zero, where λn “ λmaxpAnq. Therefore, without loss of

generality, we assume that An{λn Ñ A for some non-random positive definite matrix A

with eigenvalues bounded and bounded away from zero (otherwise we argue along a further

subsequence).

By Assumption 21, we have

¨

˚

˝

1?
n
zJẽ

1?
n
zJṼ

˛

‹

‚

ù N

¨

˚

˝

0,

¨

˚

˝

Ωẽ,ẽ
z Ωẽ,Ṽ

z

ΩṼ ,ẽ
z ΩṼ ,Ṽ

z

˛

‹

‚

˛

‹

‚

,

which can be proved by following the same steps as in the proof of Lemma B.10 (see also

Hansen and Lee (2019) and Djogbenou, MacKinnon, and Nielsen (2019)). This also implies
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that

1
?
n
zJX ù N

´

π,ΩṼ ,Ṽ
z

¯

.

We have

∆̂1 “
XJzÂnz

Je

XJzÂnzJX
“

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJẽq

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJXq

and

p
1

?
n
XJzqp

1

λ̃n
Ânqp

1
?
n
zJẽq “ OP p1q.

We also have

1

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJXq

ď
1

ξ2n
,

where ξn is the first element of pÂn{λ̃nq1{2pzJX{
?
nq, and note that ξn ù ξ where ξ has a

non-degenerate normal distribution. This implies that

1

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJXq

“ OP p1q,

whence ∆̂1 “ OP p1q.

Next, we analyze 9Φ1. Note that

1

n
9Ω “

ˆ

1

n
9Ω ´

1

n
Ω̄

˙

`

ˆ

1

n
Ω̄ ´

1

n
Ω̃

˙

`

ˆ

1

n
Ω̃ ´

1

n
Ω

˙

`
1

n
Ω

“

ˆ

1

n
9Ω ´

1

n
Ω̄

˙

` Ωẽ,ẽ
z ` oP p1q,
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as in the proof of Lemma B.7, where 9Ω is just Ώ with β́ “ β̂1. We have

1

n
Ω̃ ´

1

n
Ω̄ “ ∆̂2

1 ˆ
1

n

ÿ

gPrGs

pzJ
rgsXrgsqpXJ

rgszrgsq

loooooooooooooomoooooooooooooon

R14

´ ∆̂1 ˆ
1

n

ÿ

gPrGs

pzJ
rgsXrgsqe

J
rgszrgs

loooooooooooomoooooooooooon

R15

´ ∆̂1 ˆ
1

n

ÿ

gPrGs

pzJ
rgsergsqpXJ

rgszrgsq

loooooooooooooomoooooooooooooon

R16

.

By using the same argument as in the proof of Lemma B.7, we have

R14 “
1

n

ÿ

gPrGs

pzJ
rgsΠrgsqpΠJ

rgszrgsq `
1

n

ÿ

gPrGs

pzJ
rgsVrgsqpV J

rgszrgsq ` oP p1q

“
1

n

ÿ

gPrGs

pzJ
rgsΠrgsqpΠJ

rgszrgsq `
1

n

ÿ

gPrGs

pzJ
rgsṼrgsqpṼ J

rgszrgsq ` oP p1q

“
1

n

ÿ

gPrGs

pzJ
rgsΠrgsqpΠJ

rgszrgsq `
1

n

ÿ

gPrGs

EpzJ
rgsṼrgsqpṼ J

rgszrgsq ` oP p1q

“ ΩΠ,Π
z ` ΩṼ ,Ṽ

z ` oP p1q,

R15 “
1

n

ÿ

gPrGs

pzJ
rgsVrgsqpeJ

rgszrgsq ` oP p1q

“
1

n

ÿ

gPrGs

pzJ
rgsṼrgsqpẽJ

rgszrgsq ` oP p1q

“
1

n

ÿ

gPrGs

EpzJ
rgsṼrgsqpẽJ

rgszrgsq ` oP p1q

“ ΩṼ ,ẽ
z ` oP p1q,
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and

R16 “
1

n

ÿ

gPrGs

pzJ
rgsergsqpV J

rgszrgsq ` oP p1q

“
1

n

ÿ

gPrGs

pzJ
rgsẽrgsqpṼ J

rgszrgsq ` oP p1q

“
1

n

ÿ

gPrGs

EpzJ
rgsẽrgsqpṼ J

rgszrgsq ` oP p1q

“ Ωẽ,Ṽ
z ` oP p1q.

We thus obtain

1

n
Ω̃ “ ∆̂2

1Ω
Π,Π
z ` ∆̂2

1Ω
Ṽ ,Ṽ
z ´ ∆̂1Ω

Ṽ ,ẽ
z ´ ∆̂1Ω

ẽ,Ṽ
z ` Ωẽ,ẽ

z ` oP p1q,

since ∆̂1 “ OP p1q.

Combining the above results, we have

9Φ1 “

ˆ

p
1

?
n
XJzqp

1

λ̃n
Ânqp

1
?
n
zJXq

˙´2 ˆ

p
1

?
n
XJzqp

1

λ̃n
Ânqp

1

n
Ω̃qp

1

λ̃n
Ânqp

1
?
n
zJXq

˙

“

´

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJẽq

¯2

´

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJXq

¯4 ˆ

ˆ

p
1

?
n
XJzqp

1

λ̃n
ÂnqΩΠ,Π

z p
1

λ̃n
Ânqp

1
?
n
zJXq

˙

`

´

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJẽq

¯2

´

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJXq

¯4 ˆ

ˆ

p
1

?
n
XJzqp

1

λ̃n
ÂnqΩṼ ,Ṽ

z p
1

λ̃n
Ânqp

1
?
n
zJXq

˙

´

´

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJẽq

¯

´

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJXq

¯3 ˆ

ˆ

p
1

?
n
XJzqp

1

λ̃n
ÂnqΩṼ ,ẽ

z p
1

λ̃n
Ânqp

1
?
n
zJXq

˙

´

´

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJẽq

¯

´

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJXq

¯3 ˆ

ˆ

p
1

?
n
XJzqp

1

λ̃n
ÂnqΩẽ,Ṽ

z p
1

λ̃n
Ânqp

1
?
n
zJXq

˙

`
1

´

p 1?
n
XJzqp 1

λ̃n
Ânqp 1?

n
zJXq

¯2 ˆ

ˆ

p
1

?
n
XJzqp

1

λ̃n
ÂnqΩẽ,ẽ

z p
1

λ̃n
Ânqp

1
?
n
zJXq

˙

` oP p1q,
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and thus 9Φ1 ù Φ̄1, by the continuous mapping theorem, where

Φ̄1 “

`

pζṼ ` πqJAζẽ
˘2

ppζṼ ` πqJApζṼ ` πqq
4 ˆ

`

pζṼ ` πq
JAΩΠ,Π

z ApζṼ ` πq
˘

`

`

pζṼ ` πqJAζẽ
˘2

ppζṼ ` πqJApζṼ ` πqq
4 ˆ

´

pζṼ ` πq
JAΩṼ ,Ṽ

z ApζṼ ` πq

¯

´

`

pζṼ ` πqJAζẽ
˘

ppζṼ ` πqJApζṼ ` πqq
3 ˆ

´

pζṼ ` πq
JAΩṼ ,ẽ

z ApζṼ ` πq

¯

´

`

pζṼ ` πqJAζẽ
˘

ppζṼ ` πqJApζṼ ` πqq
3 ˆ

´

pζṼ ` πq
JAΩẽ,Ṽ

z ApζṼ ` πq

¯

`
1

ppζṼ ` πqJApζṼ ` πqq
2 ˆ

`

pζṼ ` πq
JAΩẽ,ẽ

z ApζṼ ` πq
˘

“
1

ppζṼ ` πqJApζṼ ` πqq
4

!

`

pζṼ ` πq
JAζẽ

˘2
ˆ

`

pζṼ ` πq
JAΩΠ,Π

z ApζṼ ` πq
˘

`
`

pζṼ ` πq
JAζẽ

˘2
ˆ

´

pζṼ ` πq
JAΩṼ ,Ṽ

z ApζṼ ` πq

¯

´
`

pζṼ ` πq
JAζẽ

˘

ˆ
`

pζṼ ` πq
JApζṼ ` πq

˘

ˆ

´

pζṼ ` πq
JAΩṼ ,ẽ

z ApζṼ ` πq

¯

´
`

pζṼ ` πq
JAζẽ

˘

ˆ
`

pζṼ ` πq
JApζṼ ` πq

˘

ˆ

´

pζṼ ` πq
JAΩẽ,Ṽ

z ApζṼ ` πq

¯

`
`

pζṼ ` πq
JApζṼ ` πq

˘2
ˆ

`

pζṼ ` πq
JAΩẽ,ẽ

z ApζṼ ` πq
˘

)

“

`

pζṼ ` πqJAζẽ
˘2

ˆ
`

pζṼ ` πqJAΩΠ,Π
z ApζṼ ` πq

˘

ppζṼ ` πqJApζṼ ` πqq
4

`

»

—

—

—

—

—

—

—

—

–

¨

˚

˝

´
`

pζṼ ` πqJApζṼ ` πq
˘

pApζṼ ` πqq

`

pζṼ ` πqJAζẽ
˘

pApζṼ ` πqq

˛

‹

‚

J ¨

˚

˝

Ωẽ,ẽ
z Ωẽ,Ṽ

z

ΩṼ ,ẽ
z ΩṼ ,Ṽ

z

˛

‹

‚

ˆ

¨

˚

˝

´
`

pζṼ ` πqJApζṼ ` πq
˘

pApζṼ ` πqq

`

pζṼ ` πqJAζẽ
˘

pApζṼ ` πqq

˛

‹

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ppζṼ ` πqJApζṼ ` πqq
4 ,

with

¨

˚

˝

ζẽ

ζṼ

˛

‹

‚

d
“ N

¨

˚

˝

0,

¨

˚

˝

Ωẽ,ẽ
z Ωẽ,Ṽ

z

ΩṼ ,ẽ
z ΩṼ ,Ṽ

z

˛

‹

‚

˛

‹

‚

.
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Finally, we note that

`

pζṼ ` πq
JAζẽ

˘2
ˆ

`

pζṼ ` πq
JAΩΠ,Π

z ApζṼ ` πq
˘

ě 0,

and

»

—

—

—

—

—

—

—

—

–

¨

˚

˝

´
`

pζṼ ` πqJApζṼ ` πq
˘

pApζṼ ` πqq

`

pζṼ ` πqJAζẽ
˘

pApζṼ ` πqq

˛

‹

‚

J ¨

˚

˝

Ωẽ,ẽ
z Ωẽ,Ṽ

z

ΩṼ ,ẽ
z ΩṼ ,Ṽ

z

˛

‹

‚

ˆ

¨

˚

˝

´
`

pζṼ ` πqJApζṼ ` πq
˘

pApζṼ ` πqq

`

pζṼ ` πqJAζẽ
˘

pApζṼ ` πqq

˛

‹

‚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ě 0,

and the equalities hold if and only if

`

pζṼ ` πq
JApζṼ ` πq

˘

pApζṼ ` πqq “ 0,

`

pζṼ ` πq
JAζẽ

˘

pApζṼ ` πqq “ 0.

Given that A is positive definite, the above two equalities hold if and only if ζṼ ` π “ 0,

which has probability zero since ζṼ has a non-degenerate normal distribution. In addition,

the denominator of Φ̄1 is positive with probability one, which implies

1{ 9Φ
1{2
1 “ OP p1q.

This concludes the proof.

C.9 Proof of Lemma B.9

By Lemma B.8, we have β̂
p

ÝÑ β and pβ̂ ´ βq2ΠJΠ{
?
K “ oP p1q.
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For T pβ0q, by Lemma B.7,

Ψ

pΨ

p
ÝÑ 1,

which, by (C.20), implies that

Φ1

pΦ1

p
ÝÑ 1.

We have

T pβ0q “
pXJzÂnz

JXq´1pXJzÂnz
Jeq

b

pΦ1

` a1δ `

¨

˝

dn
b

pΦ1

´ a1

˛

‚δ

“
pXJzÂnz

JXq´1pXJzÂnz
Jeq

b

pΦ1

` a1δ ` oP p1q,

where the second equality holds because

dn
b

pΦ1

´ a1 “
dn

?
Φ1

?
Φ1

b

pΦ1

´ a1 “ opp1q.

In addition, we have

pXJzÂnz
JXq´1pXJzÂnz

Jeq
b

pΦ1

“
pXJzÂnz

JXq´1

b

pXJzÂnzJXq´2

ˆ
pXJzÂnz

Jeq
a

Ψ̂

“

c

Ψ

Ψ̂
ˆ

pXJzÂnz
Jeq

?
Ψ

ˆ p1 ` oP p1qq

“
pΠJzAnz

Jẽq
?
ΠJzAnΩAnzJΠ

ˆ p1 ` oP p1qq

“
pΠJzAnz

Jẽq
?
ΠJzAnΩAnzJΠ

` oP p1q,
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whence

T pβ0q “
1

?
Ψ

ÿ

gPrGs

Π́J
rgsẽrgs ` a1δ ` oP p1q.

For LMpβ0q, if Π
JΠ{

?
K Ñ 8, we have

LMpβ0q “
XJpP ´ P̄ qe

a

Σ̂
` a2δ `

˜

dnpXJpP ´ P̄ qXq
a

Σ̂
´ a2

¸

δ

“
XJpP ´ P̄ qe

a

Σ̂
` a2δ `

ˆ

dn
?
Φ2

ˆ p1 ` oP p1qq ´ a2

˙

δ

“
XJpP ´ P̄ qe

a

Σ̂
` a2δ ` oP p1q,

where the second equality holds because by Lemma B.7,

Σ

Σ̂

p
ÝÑ 1,

which, by (C.26), implies that

Φ2pX
JpP ´ P̄ qXq2

Σ̂
“

Φ2pX
JpP ´ P̄ qXq2

Σ

Σ

Σ̂
“

pXJpP ´ P̄ qXq2

pΠJpP ´ P̄ qΠq2

Σ

Σ̂

p
ÝÑ 1.

Alternatively, if ΠJΠ{
?
K “ Op1q, we have

LMpβ0q “
XJpP ´ P̄ qe

a

Σ̂
`
dnδpX

JpP ´ P̄ qXq
a

Σ̂

“
XJpP ´ P̄ qe

a

Σ̂
` oP p1q,

where we use the fact that

XJpP ´ P̄ qX
a

Σ̂
“
XJpP ´ P̄ qX

?
Σ

ˆ
Σ

Σ̂
“

ΠJpP ´ P̄ qΠ ` OP p
?
Σq

?
Σ

ˆ OP p1q “ OP p1q
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by (C.24), ΠJΠ{
?
K “ Op1q, and

1
?
Φ2

“

c

pΠJpP ´ P̄ qΠq2

Σ
“ Op

ΠJΠ
?
K

q “ Op1q,

Assumption 4 implies that a2 “ limnÑ8 dn{
?
Φ2 “ 0 in this case. In either case, we obtain

LMpβ0q “
XJpP ´ P̄ qe

a

Σ̂
` a2δ ` oP p1q.

In addition, we have

XJpP ´ P̄ qe
a

Σ̂
“

c

Σ

Σ̂
ˆ

1
?
Σ

´

Π̂Jẽ ` Ṽ J
pP ´ P̄ qẽ ` Ṽ JPW P̄ ẽ ` Ṽ JP̄PW ẽ ´ Ṽ JPW P̄PW ẽ

¯

“

c

Σ

Σ̂
ˆ

1
?
Σ

´

Π̂Jẽ ` Ṽ J
pP ´ P̄ qẽ ` oP p

?
Σq

¯

,

“
1

?
Σ

´

Π̂Jẽ ` Ṽ J
pP ´ P̄ qẽ

¯

` oP p1q,

where the second equality holds by Σ ě CpΠJΠ ` Kq Ñ 8 as shown in Lemmas B.3 and

B.5, and the last equality holds by Lemma B.7. It follows that

LMpβ0q “
1

?
Σ

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs `

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚` a2δ ` oP p1q.

For AR, we have

eJ
pP ´ P̄ qe ´ ẽJ

pP ´ P̄ qẽ “ ẽJPW P̄ ẽ ` ẽJP̄PW ẽ ´ ẽJPW P̄PW ẽ “ OP p1q

by Lemma B.3, and Υ ě CK by (C.19). This implies that

1
?
Υ

¨

˝

ÿ

g,hPrGs2,g‰h

eJ
rgsPrg,hserhs ´

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs

˛

‚“ OP pK´1{2
q “ oP p1q.
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We also have

êJ
pP ´ P̄ qê ´ eJ

pP ´ P̄ qe “ pβ̂ ´ βq
2XJ

pP ´ P̄ qX ´ 2pβ̂ ´ βqXJ
pP ´ P̄ qe

“ pβ̂ ´ βq
2

´

ΠJ
pP ´ P̄ qΠ ` OP p

?
Σq

¯

´ 2pβ̂ ´ βq

´

Π̂Jẽ ` Ṽ J
pP ´ P̄ qẽ ` oP p

?
Σ

¯

“ pβ̂ ´ βq
2OP pΠJΠ `

?
Σq ` pβ̂ ´ βqOP p

?
Σq

“

´

pβ̂ ´ βq
2ΠJΠ ` pβ̂ ´ βq

2
?
K ` pβ̂ ´ βq

?
K

¯

ˆ OP p1q

by (C.22) and (C.24), ΠJΠ “ Op
?
Kq, and Σ “ OpΠJΠ ` Kq “ OpKq. Then by β̂

p
ÝÑ β

and pβ̂ ´ βq2ΠJΠ{
?
K “ oP p1q, we have

1
?
Υ

¨

˝

ÿ

g,hPrGs2,g‰h

êJ
rgsPrg,hsêrhs ´

ÿ

g,hPrGs2,g‰h

eJ
rgsPrg,hserhs

˛

‚

“

˜

pβ̂ ´ βq2ΠJΠ
?
K

` pβ̂ ´ βq
2

` pβ̂ ´ βq

¸

ˆ OP p1q

“ oP p1q.

It follows that, by Lemma B.7, we have

AR “

c

Υ

Υ̂
ˆ

1
?
Υ

ÿ

g,hPrGs2,g‰h

êJ
rgsPrg,hsêrhs

“

c

Υ

Υ̂
ˆ

1
?
Υ

¨

˝

ÿ

g,hPrGs2,g‰h

êJ
rgsPrg,hsêrhs ´

ÿ

g,hPrGs2,g‰h

eJ
rgsPrg,hserhs

˛

‚

`

c

Υ

Υ̂
ˆ

1
?
Υ

¨

˝

ÿ

g,hPrGs2,g‰h

eJ
rgsPrg,hserhs ´

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs

˛

‚

`

c

Υ

Υ̂
ˆ

1
?
Υ

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs

“
1

?
Υ

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs ` oP p1q.
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This concludes the proof.

C.10 Proof of Lemma B.10

Note that by Assumption 1.2, we have G Ñ 8 as n Ñ 8. The proof follows the same steps

as in Chao et al. (2012) to check the conditions for the martingale central limit theorem; see,

for example, Hall and Heyde (1980).

Step 1: Construct martingale difference array. Let

ρ1n “ cov

»

–

1
?
Ψ

ÿ

gPrGs

Π́J
rgsẽrgs,

1
?
Σ

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs `

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚

fi

fl

“
1

?
ΨΣ

ÿ

gPrGs

E
”´

Π́J
rgsẽrgs

¯ ´

Π̂J
rgsẽrgs

¯ı

,

such that ρ1 “ limnÑ8 ρ1n, and

ρ2n “ cov

»

–

1
?
Σ

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs `

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚,
1

?
Υ

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs

fi

fl

“
2

?
ΣΥ

ÿ

g,hPrGs2,g‰h

E
”´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

ı

,

such that ρ2 “ limnÑ8 ρ2n, and note that

cov

»

–

1
?
Ψ

ÿ

gPrGs

Π́J
rgsẽrgs,

1
?
Υ

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs

fi

fl “ 0.

The assumptions for ρ1 and ρ2 in Theorem 4.1 ensure that

¨

˚

˚

˚

˚

˝

1 ρ1n 0

ρ1n 1 ρ2n

0 ρ2n 1

˛

‹

‹

‹

‹

‚

´1
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exists for all n large enough, and by the Slutsky theorem, the result would follow if

¨

˚

˚

˚

˚

˝

1 ρ1n 0

ρ1n 1 ρ2n

0 ρ2n 1

˛

‹

‹

‹

‹

‚

´1{2 ¨

˚

˚

˚

˚

˝

1?
Ψ

ř

gPrGs
Π́J

rgs
ẽrgs

1?
Σ

´

ř

gPrGs
Π̂J

rgs
ẽrgs `

ř

g,hPrGs2,g‰h Ṽ
J

rgs
Prg,hsẽrhs

¯

1?
Υ

ř

g,hPrGs2,g‰h ẽ
J
rgs
Prg,hsẽrhs

˛

‹

‹

‹

‹

‚

ù N

¨

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˝

0

0

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‚

.

Let v “ pv1, v2, v3qJ with }v}2 “ 1, and

c ” pc1, c2, c3q
J

“

¨

˚

˚

˚

˚

˝

1 ρ1n 0

ρ1n 1 ρ2n

0 ρ2n 1

˛

‹

‹

‹

‹

‚

´1{2

pv1, v2, v3q
J,

and note that }c}2 is bounded for all n large enough. By Cramer-Wald device, it suffices to

show that

cJ

¨

˚

˚

˚

˚

˝

1?
Ψ

ř

gPrGs
Π́J

rgs
ẽrgs

1?
Σ

´

ř

gPrGs
Π̂J

rgs
ẽrgs `

ř

g,hPrGs2,g‰h Ṽ
J

rgs
Prg,hsẽrhs

¯

1?
Υ

ř

g,hPrGs2,g‰h ẽ
J
rgs
Prg,hsẽrhs

˛

‹

‹

‹

‹

‚

ù N p0, 1q .

Denote

Mn “
c1

?
Ψ

ÿ

gPrGs

Π́J
rgsẽrgs `

c2
?
Σ

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs `

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚

`
c3

?
Υ

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs,
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and note that Mn can be written as sum of martingale difference array. To see this, define

M1G “
c1

?
Ψ
Π́J

r1sẽr1s `
c2

?
Σ
Π̂J

r1sẽr1s,

and for g ě 2 define

MgG “
c1

?
Ψ
Π́J

rgsẽrgs `
c2

?
Σ
Π̂J

rgsẽrgs `
c2

?
Σ

ÿ

hăg

´

Ṽ J
rgsPrg,hsẽrhs ` Ṽ J

rhsPrh,gsẽrgs

¯

`
c3

?
Υ

ÿ

hăg

`

ẽJ
rgsPrg,hsẽrhs ` ẽJ

rhsPrh,gsẽrgs

˘

,

and we have Mn “
ř

gPrGs
MgG. Further define εrgs “

´

ẽJ
rgs
, Ṽ J

rgs

¯J

and the sequence of σ-

fields FgG “ tεr1s, ¨ ¨ ¨ , εrgsu such that Fpg´1qG Ă FgG with F0G “ tH,Ωu. It is clear that

tMgGuGg“1 is a sequence of martingale difference array with respect to tFgGuGg“1. Note that

ÿ

gPrGs

EpM2
gGq “ EpM2

nq “ 1

by the property of martingale difference array.

In order to show

ÿ

gPrGs

MgG ù N p0, 1q ,

it remains to check the Lindeberg’s condition

ÿ

gPrGs

E
`

M2
gG1t|MgG|ěcu

˘

Ñ 0

for every c ą 0, and the stability condition

ÿ

gPrGs

E
`

M2
gG|Fpg´1qG

˘ p
ÝÑ

ÿ

gPrGs

EpM2
gGq.
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Step 2: Check Lindeberg’s condition. It suffices to show that

ÿ

gPrGs

EpM
p2`δq

gG q Ñ 0

for some δ ą 0, and we will verify that for δ “ 2 in what follows. We have

ÿ

gPG

EpM4
gGq ď

C

Ψ2

ÿ

gPrGs

E
´

Π́J
rgsẽrgs

¯4

`
C

Σ2

ÿ

gPrGs

E
´

Π̂J
rgsẽrgs

¯4

`
C

Σ2

ÿ

gPrGs

E

˜

ÿ

hăg

Ṽ J
rgsPrg,hsẽrhs

¸4

`
C

Σ2

ÿ

gPrGs

E

˜

ÿ

hăg

Ṽ J
rhsPrh,gsẽrgs

¸4

`
C

Υ2

ÿ

gPrGs

E

˜

ÿ

hăg

ẽJ
rhsPrh,gsẽrgs

¸4

.

For the first term, we have

1

Ψ2

ÿ

gPrGs

E
´

Π́J
rgsẽrgs

¯4

ď
C

Ψ2

ÿ

gPrGs

´

Π́J
rgsΠ́rgs

¯2

ď

Cmax1ďgďG

›

›

›
Π́rgs

›

›

›

2

2
Π́JΠ́

´

Π́JΠ́
¯2

“ op1q.

Here we use the fact that Π́rgs “ zrgsAnz
JΠ, so that

max1ďgďG

›

›

›
Π́rgs

›

›

›

2

2

Π́JΠ́
“

max1ďgďG

›

›

›
Π́rgs

›

›

›

2

2
{n

ΠJzAnpzJz{nqAnzJΠ

ď
Cmax1ďgďGΠJzAnpzJ

rgs
zrgs{nqAnz

JΠ

}AnzJΠ}
2
2

ď
Cmax1ďgďG ng ˆ maxiPIg ,gPrGs }zi,g}

2
2

n

“ op1q.
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For the second term, we have

1

Σ2

ÿ

gPrGs

E
´

Π̂J
rgsẽrgs

¯4

ď
C

Σ2

ÿ

gPrGs

´

Π̂J
rgsΠ̂rgs

¯2

ď

Cmax1ďgďG

›

›

›
Π̂rgs

›

›

›

2

2
Π̂JΠ̂

pΠJΠ ` Kq
2

“ op1q

as K Ñ 8.

For the third term, we have

1

Σ2

ÿ

gPrGs

E

˜

ÿ

hăg

ẽJ
rhsPrh,gsṼrgs

¸4

ď
C

Σ2

ÿ

gPrGs

ÿ

hăg

E
´

ẽJ
rhsPrh,gsṼrgs

¯4

`
C

Σ2

ÿ

gPrGs

ÿ

h,kăg,h‰k

E
´

ẽJ
rhsPrh,gsṼrgs

¯2 ´

ẽJ
rksPrk,gsṼrgs

¯2

,

where

1

Σ2

ÿ

gPrGs

ÿ

hăg

E
´

ẽJ
rhsPrh,gsṼrgs

¯4

ď
1

Σ2

ÿ

gPrGs

ÿ

hăg

λ2max

`

Prh,gsPrg,hs

˘

ď
C

K2

ÿ

gPrGs

ÿ

hăg

trace
`

Prh,gsPrg,hs

˘

“ op1q

and

1

Σ2

ÿ

gPrGs

ÿ

h,kăg,h‰k

E
´

ẽJ
rhsPrh,gsṼrgs

¯2 ´

ẽJ
rksPrk,gsṼrgs

¯2
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ď
C

Σ2

ÿ

gPrGs

ÿ

h,kăg,h‰k

λmax

`

Prg,hsPrh,gs

˘

λmax

`

Prg,ksPrk,gs

˘

ď
C

Σ2

ÿ

gPrGs

ÿ

h,kăg,h‰k

trace
`

Prg,hsPrh,gs

˘

trace
`

Prg,ksPrk,gs

˘

ď
C

K2

ÿ

gPrGs

ÿ

hăg

trace
`

Prg,hsPrh,gs

˘

“ op1q.

The last two terms can be handled similarly.

Step 3: Check stability condition. The variance and conditional variance can be written

as

E
`

M2
1G

˘

“ E
`

M2
1G|F0G

˘

“
c21
Ψ
Π́J

r1sΩ
ẽ,ẽ
1 Π́r1s `

2c1c2
?
ΨΣ

Π̂J
r1sΩ

ẽ,ẽ
1 Π́r1s `

c22
Σ
Π̂J

r1sΩ
ẽ,ẽ
1 Π̂r1s,

and for g ě 2,

E
`

M2
gG

˘

“
c21
Ψ
Π́J

rgsΩ
ẽ,ẽ
g Π́rgs `

2c1c2
?
ΨΣ

Π̂J
rgsΩ

ẽ,ẽ
g Π́rgs `

c22
Σ
Π̂J

rgsΩ
ẽ,ẽ
g Π̂rgs

`
c22
Σ

ÿ

hăg

trace
´

Ωẽ,ẽ
h Prh,gsΩ

Ṽ ,Ṽ
g Prg,hs

¯

`
c22
Σ

ÿ

hăg

trace
´

ΩṼ ,Ṽ
h Prh,gsΩ

ẽ,ẽ
g Prg,hs

¯

`
4c23
Υ

ÿ

hăg

trace
´

Ωẽ,ẽ
h Prh,gsΩ

ẽ,ẽ
g Prg,hs

¯

`
2c22
Σ

ÿ

hăg

trace
´

Ωẽ,Ṽ
h Prh,gsΩ

ẽ,Ṽ
g Prg,hs

¯

`
4c2c3
?
ΣΥ

ÿ

hăg

trace
´

Ωẽ,ẽ
h Prh,gsΩ

Ṽ ,ẽ
g Prg,hs

¯

`
4c2c3
?
ΣΥ

ÿ

hăg

trace
´

Ωẽ,Ṽ
h Prh,gsΩ

ẽ,ẽ
g Prg,hs

¯

,

and

E
`

M2
gG|Fpg´1qG

˘

“
c21
Ψ
Π́J

rgsΩ
ẽ,ẽ
g Π́rgs `

2c1c2
?
ΨΣ

Π̂J
rgsΩ

ẽ,ẽ
g Π́rgs `

c22
Σ
Π̂J

rgsΩ
ẽ,ẽ
g Π̂rgs

`
2c1c2
?
ΨΣ

ÿ

hăg

ẽJ
rhsPrh,gsΩ

Ṽ ,ẽ
g Π́rgs `

2c1c2
?
ΨΣ

ÿ

hăg

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Π́rgs

`
4c1c3
?
ΨΥ

ÿ

hăg

ẽJ
rhsPrh,gsΩ

Ṽ ,ẽ
g Π́rgs `

2c1c2
?
ΨΣ

ÿ

hăg

ẽJ
rhsPrh,gsΩ

Ṽ ,ẽ
g Π̂rgs
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`
2c1c2
?
ΨΣ

ÿ

hăg

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Π̂rgs `

4c1c3
?
ΨΥ

ÿ

hăg

ẽJ
rhsPrh,gsΩ

Ṽ ,ẽ
g Π̂rgs

`
c22
Σ

ÿ

h,kăg

ẽJ
rhsPrh,gsΩ

Ṽ ,Ṽ
g Prg,ksẽrks `

c22
Σ

ÿ

h,kăg

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Prg,ksṼrks

`
4c23
Υ

ÿ

h,kăg

ẽJ
rhsPrh,gsΩ

ẽ,ẽ
g Prg,ksẽrks `

2c22
Σ

ÿ

h,kăg

eJ
rhsPrh,gsΩ

Ṽ ,ẽ
g Prg,ksṼrks

`
4c2c3
?
ΣΥ

ÿ

h,kăg

V J
rhsPrh,gsΩ

ẽ,ẽ
g Prg,ksẽrks `

4c2c3
?
ΣΥ

ÿ

h,kăg

eJ
rhsPrh,gsΩ

Ṽ ,ẽ
g Prg,ksẽrks.

We thus obtain

E
`

M2
gG|Fpg´1qG

˘

´ E
`

M2
gG

˘

“

$

’

&

’

%

2c1c2?
ΨΣ

ř

hăg ẽ
J
rhs
Prh,gsΩ

Ṽ ,ẽ
g Π́rgs ` 2c1c2?

ΨΣ

ř

hăg Ṽ
J

rhs
Prh,gsΩ

ẽ,ẽ
g Π́rgs ` 4c1c3?

ΨΥ

ř

hăg ẽ
J
rhs
Prh,gsΩ

Ṽ ,ẽ
g Π́rgs

`2c1c2?
ΨΣ

ř

hăg ẽ
J
rhs
Prh,gsΩ

Ṽ ,ẽ
g Π̂rgs ` 2c1c2?

ΨΣ

ř

hăg Ṽ
J

rhs
Prh,gsΩ

ẽ,ẽ
g Π̂rgs ` 4c1c3?

ΨΥ

ř

hăg ẽ
J
rhs
Prh,gsΩ

Ṽ ,ẽ
g Π̂rgs

,

/

.

/

-

`

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

c22
Σ

”

ř

h,kăg ẽ
J
rhs
Prh,gsΩ

Ṽ ,Ṽ
g Prg,ksẽrks ´

ř

hăg trace
´

Ωẽ,ẽ
h Prh,gsΩ

Ṽ ,Ṽ
g Prg,hs

¯ı

`
c22
Σ

”

ř

h,kăg Ṽ
J

rhs
Prh,gsΩ

ẽ,ẽ
g Prg,ksṼrks ´

ř

hăg trace
´

ΩṼ ,Ṽ
h Prh,gsΩ

ẽ,ẽ
g Prg,hs

¯ı

`
4c23
Υ

”

ř

h,kăg ẽ
J
rhs
Prh,gsΩ

ẽ,ẽ
g Prg,ksẽrks ´

ř

hăg trace
´

Ωẽ,ẽ
h Prh,gsΩ

ẽ,ẽ
g Prg,hs

¯ı

`
2c22
Σ

”

ř

h,kăg e
J
rhs
Prh,gsΩ

Ṽ ,ẽ
g Prg,ksṼrks ´

ř

hăg trace
´

Ωẽ,Ṽ
h Prh,gsΩ

ẽ,Ṽ
g Prg,hs

¯ı

`4c2c3?
ΣΥ

”

ř

h,kăg V
J

rhs
Prh,gsΩ

ẽ,ẽ
g Prg,ksẽrks ´

ř

hăg trace
´

Ωẽ,ẽ
h Prh,gsΩ

Ṽ ,ẽ
g Prg,hs

¯ı

`4c2c3?
ΣΥ

”

ř

h,kăg e
J
rhs
Prh,gsΩ

Ṽ ,ẽ
g Prg,ksẽrks ´

ř

hăg trace
´

Ωẽ,Ṽ
h Prh,gsΩ

ẽ,ẽ
g Prg,hs

¯ı

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

” M
p1q

gG ` M
p2q

gG ,

and it suffices to show that

M p1q
n ”

ÿ

gPrGs

M
p1q

gG “ oP p1q,

M p2q
n ”

ÿ

gPrGs

M
p2q

gG “ oP p1q.

Consider first M
p1q
n , we shall only compute the sum of the first term in M

p1q

gG , as the
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other terms can be handled similarly. Recall that P̃ is the block lower triangular matrix

corresponding to P ´ P̄ , we have

E

¨

˝

2c1c2
?
ΨΣ

ÿ

gPrGs

ÿ

hăg

ẽJ
rhsPrh,gsΩ

Ṽ ,ẽ
g Π́rgs

˛

‚“ 0,

and

V

¨

˝

2c1c2
?
ΨΣ

ÿ

gPrGs

ÿ

hăg

ẽJ
rhsPrh,gsΩ

Ṽ ,ẽ
g Π́rgs

˛

‚“
4c21c

2
2

ΨΣ
E

´

ẽJP̃JΩṼ ,ẽΠ́
¯2

ď

Cλmax

´

P̃ P̃J

¯

λmax

`

Ωẽ,ṼΩṼ ,ẽ

˘

Π́JΠ́

pΠ́JΠ́qK

ď

Cλmax

´

P̃ P̃J

¯

K

ď

C
›

›

›
P̃ P̃J

›

›

›

F

K

“ op1q,

where we use Lemma B.2 in the last equality.

Now consider M
p2q
n , we shall only compute the sum of the first term in M

p2q

gG , as the other

terms can be handled similarly. We have

E

¨

˝

c22
Σ

ÿ

gPrGs

«

ÿ

h,kăg

ẽJ
rhsPrh,gsΩ

Ṽ ,Ṽ
g Prg,ksẽrks ´

ÿ

hăg

trace
´

Ωẽ,ẽ
h Prh,gsΩ

Ṽ ,Ṽ
g Prg,hs

¯

ff

˛

‚“ 0,

and

V

¨

˝

c22
Σ

ÿ

gPrGs

«

ÿ

h,kăg

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Prg,ksṼrks ´

ÿ

hăg

trace
´

ΩṼ ,Ṽ
h Prh,gsΩ

ẽ,ẽ
g Prg,hs

¯

ff

˛

‚

ď
C

Σ2
E

¨

˝

ÿ

gPrGs

ÿ

hăg

´

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Prg,hsṼrhs ´ trace

´

ΩṼ ,Ṽ
h Prh,gsΩ

ẽ,ẽ
g Prg,hs

¯¯

˛

‚

2
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`
C

Σ2
E

¨

˝

ÿ

gPrGs

ÿ

h,kăg,h‰k

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Prg,ksṼrks

˛

‚

2

.

For the first term, we have

1

Σ2
E

¨

˝

ÿ

gPrGs

ÿ

hăg

´

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Prg,hsṼrhs ´ trace

´

ΩṼ ,Ṽ
h Prh,gsΩ

ẽ,ẽ
g Prg,hs

¯¯

˛

‚

2

“
1

Σ2
E

¨

˝

ÿ

hPrGs

Ṽ J
rhs

˜

ÿ

gąh

Prh,gsΩ
ẽ,ẽ
g Prg,hs

¸

Ṽrhs ´ trace

˜

ΩṼ ,Ṽ
h

˜

ÿ

gąh

Prh,gsΩ
ẽ,ẽ
g Prg,hs

¸¸

˛

‚

2

ď
1

Σ2

ÿ

hPrGs

E

˜

Ṽ J
rhs

˜

ÿ

gąh

Prh,gsΩ
ẽ,ẽ
g Prg,hs

¸

Ṽrhs

¸2

ď
1

Σ2

ÿ

hPrGs

λ2max

ˆ

´

P̃JΩẽP̃
¯

rh,hs

˙

ď
C

Σ2

ÿ

hPrGs

trace

ˆ

´

P̃JΩẽP̃
¯

rh,hs

˙

ď
C

Σ2
trace

´

P̃JΩẽP̃
¯

ď
C

K2
trace

´

P̃JP̃
¯

“ op1q,

where we use the fact that

trace
´

P̃JP̃
¯

“ ||P̃ ||
2
F ď ||P ||

2
F “ OpKq.

For the second term, we have

1

Σ2
E

¨

˝

ÿ

gPrGs

ÿ

h,kăg,h‰k

Ṽ J
rhsPrh,gsΩ

ẽ,ẽ
g Prg,ksṼrks

˛

‚

2

“
1

Σ2
E

¨

˝

ÿ

h,kPrGs2,h‰k

Ṽ J
rhs

˜

ÿ

gąh_k

Prh,gsΩ
ẽ,ẽ
g Prg,ks

¸

Ṽrks

˛

‚

2
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“
1

Σ2
E

¨

˝

ÿ

h,kPrGs2,hăk

Ṽ J
rhs

˜

ÿ

gąk

Prh,gsΩ
ẽ,ẽ
g Prg,ks

¸

Ṽrks

`
ÿ

h,kPrGs2,hąk

Ṽ J
rhs

˜

ÿ

gąh

Prh,gsΩ
ẽ,ẽ
g Prg,ks

¸

Ṽrks

˛

‚

2

ď
C

Σ2

ÿ

h,kPrGs2,h‰k

E

˜

Ṽ J
rhs

˜

ÿ

gąh_k

Prh,gsΩ
ẽ,ẽ
g Prg,ks

¸

Ṽrks

¸2

ď
C

Σ2

ÿ

h,kPrGs2,h‰k

trace

˜˜

ÿ

gąh_k

Prh,gsΩ
ẽ,ẽ
g Prg,ks

¸ ˜

ÿ

gąh_k

Prk,gsΩ
ẽ,ẽ
g Prg,hs

¸¸

ď
C

Σ2

ÿ

h,kPrGs2

trace

ˆ

´

P̃JΩẽP̃
¯

rh,ks

´

P̃JΩẽP̃
¯

rk,hs

˙

ď
C

K2
trace

´

P̃JΩẽP̃ P̃
JΩẽP̃

¯

ď

C
›

›

›
P̃ P̃J

›

›

›

2

F

K2

“ op1q,

where we use Lemma B.2 in the last equality. This concludes the proof.

C.11 Proof of Lemma B.11

For the first result, for j P rdzs, let vj be the dz-dimensional unit vector with j-th element

one and other elements zero, and denote z̄j “ zΩ´1{2vj, then

z̄J
j z̄j “ vJ

j pΩ{nq
´1{2

pzJz{nqpΩ{nq
´1{2vj “ Op1q,

max
gPrGs

z̄J
j,rgsz̄j,rgs “ max

gPrGs
vJ
j pΩ{nq

´1{2
pzJ

rgszrgs{nqpΩ{nq
´1{2vj “ op1q.

It follows that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
Σ

ÿ

gPrGs

E
”

`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝

ÿ

gPrGs

E
`

z̄J
j,rgsẽrgs

˘2

˛

‚

1{2 ¨

˝

1

Σ

ÿ

gPrGs

E
´

Π̂J
rgsẽrgs

¯2

˛

‚

1{2

“ Op1q,
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and as dz is fixed, we obtain

1
?
Σ
Ω´1{2

ÿ

gPrGs

E
”

`

zJ
rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯ı

“ Op1q. (C.32)

In addition, let V̂ “ MW pP ´ P̄ qV “ QṼ , we have

1
?
Σ
Ω´1{2

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

X̂J
rgsêrgs

¯ı

“
1

?
Σ
Ω´1{2

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

Π̂J
rgsêrgs

¯ı

`
1

?
Σ
Ω´1{2

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

V̂ J
rgsêrgs

¯ı

.

Thus, it suffices to show that, for any j,

1
?
Σ

ÿ

gPrGs

”

`

z̄J
j,rgsêrgs

˘

´

Π̂J
rgsêrgs

¯ı

´
1

?
Σ

ÿ

gPrGs

E
”

`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯ı

“ oP p1q, (C.33)

1
?
Σ

ÿ

gPrGs

”

`

z̄J
j,rgsêrgs

˘

´

V̂ J
rgsêrgs

¯ı

“ oP p1q. (C.34)

For (C.33), the left-hand side can be written as

1
?
Σ

¨

˝

ÿ

gPrGs

`

z̄J
j,rgsêrgs

˘

´

Π̂J
rgsêrgs

¯

´
ÿ

gPrGs

E
`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯

˛

‚

“
1

?
Σ

¨

˝

ÿ

gPrGs

`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯

´
ÿ

gPrGs

E
`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯

˛

‚

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

R27

`
1

?
Σ

¨

˝

ÿ

gPrGs

`

z̄J
j,rgsergs

˘

´

Π̂J
rgsergs

¯

´
ÿ

gPrGs

`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯

˛

‚

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

R28

`
1

?
Σ

¨

˝

ÿ

gPrGs

`

z̄J
j,rgsêrgs

˘

´

Π̂J
rgsêrgs

¯

´
ÿ

gPrGs

`

z̄J
j,rgsergs

˘

´

Π̂J
rgsergs

¯

˛

‚

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

R29

.
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For R27, it has mean zero and

V pR27q “
1

Σ
E

¨

˝

ÿ

gPrGs

`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯

´
ÿ

gPrGs

E
`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯

˛

‚

2

ď
1

Σ

ÿ

gPrGs

E
´

`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯¯2

ď

Cmax1ďgďG

›

›

›
Π̂rgs

›

›

›

2

2
z̄J
j z̄j

pΠJΠ ` Kq

“ op1q.

For R28, we have

R28 “
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsWrgsγ̂ẽ

˘

´

Π̂J
rgsWrgsγ̂ẽ

¯

loooooooooooooooooooooomoooooooooooooooooooooon

R28,1

´
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsWrgsγ̂ẽ

˘

´

Π̂J
rgsẽrgs

¯

loooooooooooooooooooomoooooooooooooooooooon

R28,2

´
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsẽrgs

˘

´

Π̂J
rgsWrgsγ̂ẽ

¯

loooooooooooooooooooomoooooooooooooooooooon

R28,3

,

where

|R28,1| ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2
ˆ

b

z̄J
j z̄j ˆ

d

Π̂JΠ̂

Σ
“ oP p1q,

|R28,2| ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2
ˆ

b

z̄J
j z̄j ˆ

d

1

Σ

ÿ

gPrGs

´

Π̂J
rgs
ẽrgs

¯2

“ oP p1q,

|R28,3| ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2
ˆ

d

ÿ

gPrGs

´

z̄J
j,rgs

ẽrgs

¯2

ˆ

d

Π̂JΠ̂

Σ
“ oP p1q,
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whence R28 “ oP p1q. For R29, we have

R29 “ ∆̂2
ˆ

1
?
Σ

ÿ

gPrGs

`

z̄J
j,rgsXrgs

˘

´

Π̂J
rgsXrgs

¯

looooooooooooooooooomooooooooooooooooooon

R29,1

´ ∆̂ ˆ
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsXrgs

˘

´

Π̂J
rgsergs

¯

loooooooooooooooooomoooooooooooooooooon

R29,2

´ ∆̂ ˆ
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsergs

˘

´

Π̂J
rgsergs

¯

looooooooooooooooomooooooooooooooooon

R29,3

,

where ∆̂ “ oP p1q and

|R29,1| ď

d

ÿ

gPrGs

z̄J
j,rgs

z̄j,rgsX
J
rgs
Xrgs ˆ

d

1

Σ

ÿ

gPrGs

Π̂J
rgs
Π̂rgsX

J
rgs
Xrgs “ OP p1q,

|R29,2| ď

d

ÿ

gPrGs

z̄J
j,rgs

z̄j,rgsX
J
rgs
Xrgs ˆ

d

1

Σ

ÿ

gPrGs

Π̂J
rgs
Π̂rgse

J
rgs
ergs “ OP p1q,

|R29,3| ď

d

ÿ

gPrGs

z̄J
j,rgs

z̄j,rgse
J
rgs
ergs ˆ

d

1

Σ

ÿ

gPrGs

Π̂J
rgs
Π̂rgse

J
rgs
ergs “ OP p1q,

since maxgPrGs E
´

XJ
rgs
Xrgs

¯

“ Op1q and maxgPrGs E
´

eJ
rgs
ergs

¯

“ Op1q by Lemma B.1. It

follows that R29 “ oP p1q.

For (C.34), the left-hand side can be written as

1
?
Σ

ÿ

gPrGs

`

z̄J
j,rgsêrgs

˘

´

V̂ J
rgsêrgs

¯

“
∆̂2

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsXrgs

˘

´

V̂ J
rgsXrgs

¯

´
∆̂

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsXrgs

˘

´

V̂ J
rgsergs

¯

´
∆̂

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsergs

˘

´

V̂ J
rgsXrgs

¯

`
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsergs

˘

´

V̂ J
rgsergs

¯

.

Here we only show that the last term is oP p1q, which is most difficult since it does not involve
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∆̂. We have

1
?
Σ

ÿ

gPrGs

`

z̄J
j,rgsergs

˘

´

V̂ J
rgsergs

¯

looooooooooooooooomooooooooooooooooon

R30

“
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsẽrgs

˘

´

V̂ J
rgsẽrgs

¯

looooooooooooooooomooooooooooooooooon

R30,1

´
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsWrgsγ̂ẽ

˘

´

V̂ J
rgsẽrgs

¯

looooooooooooooooooomooooooooooooooooooon

R30,2

´
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsẽrgs

˘

´

V̂ J
rgsWrgsγ̂ẽ

¯

looooooooooooooooooomooooooooooooooooooon

R30,3

`
1

?
Σ

ÿ

gPrGs

`

z̄J
j,rgsWrgsγ̂ẽ

˘

´

V̂ J
rgsWrgsγ̂ẽ

¯

loooooooooooooooooooooomoooooooooooooooooooooon

R30,4

.

Note that

V̂rgs “
ÿ

hPrGs,h‰g

Prg,hsṼrhs `
ÿ

hPrGs

PW,rg,hsPrh,hsṼrhs

`
ÿ

hPrGs

Prg,gsPW,rg,hsṼrhs ´
ÿ

hPrGs

¨

˝

ÿ

kPrGs

PW,rg,ksPrk,ksPW,rk,hs

˛

‚Ṽrhs.

Therefore, we have

1

Σ

ÿ

gPrGs

´

V̂ J
rgsẽrgs

¯2

ď
C

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2

`
C

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs

Ṽ J
rhsPrh,hsPW,rh,gsẽrgs

˛

‚

2

`
C

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs

Ṽ J
rhsPW,rh,gsPrg,gsẽrgs

˛

‚

2

`
C

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs

Ṽ J
rhs

¨

˝

ÿ

kPrGs

PW,rh,ksPrk,ksPW,rk,gs

˛

‚ẽrgs

˛

‚

2
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“
C

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2

` oP p1q

“
C

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs,h‰g

Ṽ J
rhsPrh,gsẽrgs

˛

‚

2

` oP p1q

“ OP p1q,

by Lemma B.4 and the facts that

1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs

Ṽ J
rhsPrh,hsPW,rh,gsẽrgs

˛

‚

2

“
1

Σ

ÿ

g,hPrGs2

E
´

Ṽ J
rhsPrh,hsPW,rh,gsẽrgs

¯2

ď
Ctrace

`

PW P̄
2PW

˘

Σ

“ op1q,

1

Σ

ÿ

gPrGs

E

¨

˝

ÿ

hPrGs

Ṽ J
rhsPW,rh,gsPrg,gsẽrgs

˛

‚

2

“
1

Σ

ÿ

g,hPrGs2

E
´

Ṽ J
rhsPW,rh,gsPrg,gsẽrgs

¯2

ď
Ctrace

`

P̄P 2
W P̄

˘

Σ

“ op1q,

and

1

Σ

ÿ

gPrGs

¨

˝

ÿ

hPrGs

Ṽ J
rhs

¨

˝

ÿ

kPrGs

PW,rh,ksPrk,ksPW,rk,gs

˛

‚ẽrgs

˛

‚

2

“
1

Σ

ÿ

g,hPrGs2

¨

˝Ṽ J
rhs

¨

˝

ÿ

kPrGs

PW,rh,ksPrk,ksPW,rk,gs

˛

‚ẽrgs

˛

‚

2

ď
Ctrace

`

PW P̄P
2
W P̄PW

˘

Σ

“ op1q.
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This implies

|R30,2| ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2
ˆ

b

z̄J
j z̄j ˆ

d

1

Σ

ÿ

gPrGs

´

V̂ J
rgs
ẽrgs

¯2

“ oP p1q.

In addition, we have

|R30,3| ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2
ˆ

d

ÿ

gPrGs

´

z̄J
j,rgs

ẽrgs

¯2

ˆ

d

Ṽ JQ2Ṽ

Σ
“ oP p1q,

|R30,4| ď max
1ďgďG

›

›Wrgsγ̂ẽ
›

›

2

2
ˆ

b

z̄J
j z̄j ˆ

d

Ṽ JQ2Ṽ

Σ
“ oP p1q.

It follows that

R30 “ R30,1 ` oP p1q,

and for R30,1, note that similar to the proof above, we also have

R30,1 “
1

?
Σ

ÿ

g,hPrGs2g‰h

`

z̄J
j,rgsẽrgs

˘

´

Ṽ J
rhsPrh,gsẽrgs

¯

` oP p1q,

where

E

¨

˝

1
?
Σ

ÿ

g,hPrGs2g‰h

`

zJ
rgsẽrgs

˘

´

Ṽ J
rhsPrh,gsẽrgs

¯

˛

‚“ 0,

and

V

¨

˝

1
?
Σ

ÿ

g,hPrGs2g‰h

`

z̄J
j,rgsẽrgs

˘

´

Ṽ J
rhsPrh,gsẽrgs

¯

˛

‚

“
1

Σ
E

¨

˝

ÿ

g,hPrGs2g‰h

`

z̄J
j,rgsẽrgs

˘

´

Ṽ J
rhsPrh,gsẽrgs

¯

˛

‚

2
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ď
C

Σ
E

¨

˝

ÿ

g,hPrGs2g‰h

z̄J
j,rgs

`

ẽrgsẽ
J
rgs ´ Ωẽ,ẽ

g

˘

Prg,hsṼrhs

˛

‚

2

`
C

Σ
E

¨

˝

ÿ

g,hPrGs2g‰h

z̄J
j,rgsΩ

ẽ,ẽ
g Prg,hsṼrhs

˛

‚

2

ď
C

Σ

ÿ

g,hPrGs2g‰h

E
´

z̄J
j,rgsẽrgsẽ

J
rgsPrg,hsṼrhs

¯2

`
C

Σ
E

´

z̄J
j ΩẽpP ´ P̄ qṼ

¯2

ď
CmaxgPrGs

›

›z̄j,rgs

›

›

2

2

Σ

ÿ

g,hPrGs2g‰h

trace
`

Prg,hsPrh,gs

˘

`
Cz̄J

j z̄j

Σ

“ op1q.

For the second result, we have

1
?
ΣΥ

»

–

ÿ

g,hPrGs2,g‰h

`

XJ
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘

´
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

fi

fl

“
1

?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘

`
1

?
ΣΥ

»

–

ÿ

g,hPrGs2,g‰h

`

V J
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘

´
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

fi

fl . (C.35)

The first term on the RHS of (C.35) can be written as

1
?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘
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“
1

?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hsẽrhs

˘ `

ẽJ
rgsPrg,hsẽrhs

˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R31

`
1

?
ΣΥ

¨

˝

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hserhs

˘ `

eJ
rgsPrg,hserhs

˘

´
ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hsẽrhs

˘ `

ẽJ
rgsPrg,hsẽrhs

˘

˛

‚

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

R32

`
1

?
ΣΥ

¨

˝

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘

´
ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hserhs

˘ `

eJ
rgsPrg,hserhs

˘

˛

‚

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

R33

.

By using the same argument as in the proof of Lemma B.6, we can show that R31 “ oP p1q

and R32 “ oP p1q. For R33, we have

R33 “ ´∆̂3
ˆ

1
?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hsXrhs

˘ `

XJ
rgsPrg,hsXrhs

˘

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

R33,1

` ∆̂2
ˆ

1
?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hserhs

˘ `

XJ
rgsPrg,hsXrhs

˘

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

R33,2

` ∆̂2
ˆ

1
?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hsXrhs

˘ `

eJ
rgsPrg,hsXrhs

˘

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

R33,3

` ∆̂2
ˆ

1
?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hsXrhs

˘ `

XJ
rgsPrg,hserhs

˘

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

R33,4

´ ∆̂ ˆ
1

?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hsXrhs

˘ `

eJ
rgsPrg,hserhs

˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R33,5

´ ∆̂ ˆ
1

?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hserhs

˘ `

XJ
rgsPrg,hserhs

˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R33,6
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´ ∆̂ ˆ
1

?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

ΠJ
rgsPrg,hserhs

˘ `

eJ
rgsPrg,hsXrhs

˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

R33,7

,

and by using a similar argument as in the proof of Lemma B.6, we can show that

R33,i “ OP p1q, i “ 1, . . . , 7,

which implies that R33 “ oP p1q.

The second term on the RHS of (C.35) can be written as

1
?
ΣΥ

¨

˝

ÿ

g,hPrGs2,g‰h

`

V J
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘

´
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

˛

‚

“
1

?
ΣΥ

¨

˝

ÿ

g,hPrGs2,g‰h

´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

´
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

˛

‚

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

R34

`
1

?
ΣΥ

¨

˝

ÿ

g,hPrGs2,g‰h

`

V J
rgsPrg,hserhs

˘ `

eJ
rgsPrg,hserhs

˘

´
ÿ

g,hPrGs2,g‰h

´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

˛

‚

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

R35

`
1

?
ΣΥ

¨

˝

ÿ

g,hPrGs2,g‰h

`

V J
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘

´
ÿ

g,hPrGs2,g‰h

`

V J
rgsPrg,hserhs

˘ `

eJ
rgsPrg,hserhs

˘

˛

‚

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

R36

.

By using the same argument as in the proof of Lemma B.6, we can show that R34 “ oP p1q

and R35 “ oP p1q. In addition, we can show that R36 “ oP p1q as in the proof for R33. This

concludes the proof.
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C.12 Proof of Lemma B.12

If Assumptions 1–4 hold, then by Lemma B.8, we have β̂
p

ÝÑ β. Consider first ρ̂1. It suffices

to show that ρ̂1 ´ ρ1n “ oP p1q, and we note that ρ̂1 can be written as

ρ̂1 “
1

a

Ψ̂Σ̂

ÿ

gPrGs

”´

X́J
rgsêrgs

¯ ´

X̂J
rgsêrgs

¯ı

“
1

a

Ψ̂Σ̂

ÿ

gPrGs

”´

pzÂnz
JXq

J
rgsêrgs

¯ ´

X̂J
rgsêrgs

¯ı

“
1

a

Ψ̂Σ̂
XJzÂn

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

X̂J
rgsêrgs

¯ı

“

c

Σ

Σ̂
ˆ

1
a

XJzÂnΩ̂ÂnzJX
XJzÂnΩ̂

1{2

ˆ Ω̂´1{2Ω1{2
ˆ

1
?
Σ
Ω´1{2

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

X̂J
rgsêrgs

¯ı

.

By Lemma B.7, we have

c

Σ

Σ̂
“ 1 ` oP p1q,

Ω̂´1{2Ω1{2
“ Idz ` oP p1q,

and by (C.17) and (C.18) we have

1
a

XJzÂnΩ̂ÂnzJX
XJzÂnΩ̂

1{2

“
1

b

pXJz{rnqpÂn{λnqpΩ̂{nqpÂn{λnqpzJX{rnq

pXJz{rnqpÂn{λnqpΩ̂{nq
1{2

“
1

a

pΠJz{rnqpAn{λnqpΩ{nqpAn{λnqpzJΠ{rnq
pΠJz{rnqpAn{λnqpΩ{nq

1{2
` oP p1q

“
1

?
ΠJzAnΩAnzJΠ

ΠJzAnΩ
1{2

` oP p1q.
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Further recall that

ρ1n “
1

?
ΨΣ

ÿ

gPrGs

E
”´

Π́J
rgsẽrgs

¯ ´

Π̂J
rgsẽrgs

¯ı

“
1

?
ΠJzAnΩAnzJΠ

ΠJzAnΩ
1{2

ˆ
1

?
Σ
Ω´1{2

ÿ

gPrGs

E
”

`

zJ
rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯ı

.

The consistency of ρ̂1 then follows by (C.32) and Lemma B.11.

Next, consider ρ̂2. It suffices to show that ρ̂2 ´ ρ2n “ oP p1q, we have

ρ̂2 ´ ρ2n “
2

?
ΣΥ

»

–

ÿ

g,hPrGs2,g‰h

`

XJ
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘

´
ÿ

g,hPrGs2,g‰h

E
´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

fi

fl

`

ˆ

c

ΣΥ

Σ̂Υ̂
´ 1

˙

ˆ

¨

˝

2
?
ΣΥ

ÿ

g,hPrGs2,g‰h

`

XJ
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘

˛

‚.

The consistency of ρ̂2 then follows by Lemmas B.7 and B.11.

Lastly, consider α̂1 and α̂2. If Assumptions 1-3 hold with ΠJΠ{
?
K Ñ 8, then by

(C.20), (C.26) and Lemma B.7, we have pΦ1{Φ1
p

ÝÑ 1 and pΦ2{Φ2
p

ÝÑ 1. Therefore, if the

assumptions for dn in Assumption 4 hold, then by the continuous mapping theorem, we have

α̂1
p

ÝÑ α1 and α̂2
p

ÝÑ α2. Alternatively, if Assumption 1-3 hold with ΠJΠ{
?
K “ Op1q, we

have a2 “ 0, so that α2 “ 0 and α1 “ 1. By Lemma B.7, we have Σ̂{Σ
p

ÝÑ 1, and note that

Σ{ΓṼ ,ẽ Ñ 1 since ΠJΠ{K Ñ 0. With ΓṼ ,ẽ{K Ñ Γ22 ą 0, we can show that pΦ2 ù Φ̄2 for

some random variable Φ̄2 such that Φ̄2 ą 0 with probability one, as in the proof of Step 3

of Lemma B.8. Combining this with the fact that pΦ1
p

ÝÑ 0 by (C.20) and Lemma B.7, we

have α̂2
p

ÝÑ 0 and α̂1
p

ÝÑ 1, by the continuous mapping theorem. This concludes the proof.
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D Proofs of Main Results

D.1 Proof of Proposition 3.1

The proof follows exactly the same lines as in the proof of Lemma 2.2. in Lim et al. (2024)

and is thus omitted.

D.2 Proof of Theorem 4.1

The result follows from Lemma B.9, Lemma B.10 and the Slutsky theorem.

D.3 Proof of Theorem 4.2

Consider the set M1 of data generating processes m that satisfy the weak convergence result

(3.5) pointwise for all δ P ℜ. It is straightforward to see that M Ă M1. As a result, the test

class C under consideration is a subset of an augmented class C1 of ϕn satisfying that

lim
nÑ8

E rϕns ď α for all m P M1, δ “ 0, (D.1)

lim inf
nÑ8

E rϕns ě α for all m P M1, δ ‰ 0. (D.2)

We also note that the oracle version of the combination test, ϕo
n in (3.6), can be understood

as taking the weak convergence result (3.5) as the starting point and is simply the UMPU

test in the limiting problem (under known a1pα1q, a2pα2q, ρ1, ρ2), evaluated at the sample

analgoues (Wald, LM, and AR statistics). By construction, ϕo
n satisfies (D.1) and (D.2), so

ϕo
n P C1. Furthermore, by a direct application of Theorem 1 in Müller (2011), it follows that

for any δ1 ‰ 0 and any ϕn P C1,

lim
nÑ8

E rϕns ď lim
nÑ8

E rϕo
ns for all m P M1, δ “ δ1,
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which subsequently implies that for any δ1 ‰ 0 and any ϕn P C,

lim
nÑ8

E rϕns ď lim
nÑ8

E rϕo
ns for all m P M, δ “ δ1.

Lastly, note that E rϕ˚
ns is continuous in pα̂1, α̂2, ρ̂1, ρ̂2q, which are consistent for pα1, α2, ρ1, ρ2q

under the assumptions of Theorem 4.1 by Lemma B.12. By the continuous mapping theorem,

we thus have that, for any δ, E rϕ˚
ns “ E rϕo

ns ` opp1q. Therefore, we have ϕ˚
n satisfies (4.1)

and (4.2), and thus ϕ˚
n P C. In addition, for any δ1 ‰ 0, and any ϕn P C,

lim
nÑ8

E rϕns ď lim
nÑ8

E rϕo
ns “ lim

nÑ8
E rϕ˚

ns for all m P M, δ “ δ1.

For the second part, it is straightforward to check that ϕ̃n P C. Also, note that the

comparison of local asymptotic power of ϕ˚
n and ϕ̃n can be reduced to the comparison of the

non-centrality parameters for ϕo
n and ϕ̃n in their limiting distributions, which are given by

paJV ´1aqδ2 and a21δ
2, respectively, where

a “

¨

˚

˚

˚

˚

˝

a1

a2

0

˛

‹

‹

‹

‹

‚

, V “

¨

˚

˚

˚

˚

˝

1 ρ1 0

ρ1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

.

Direct calculation yields

paJV ´1aqδ2 ´ a21δ
2

“
δ2

1 ´ ρ21 ´ ρ22
pa2 ´ ρ1a1q

2
ě 0,

and since ρ21 ` ρ22 ă 1 and δ ‰ 0, we obtain the desired result.

D.4 Proof of Theorem 4.3

We shall distinguish between the two cases: (i) ΠJΠ{
?
K is diverging and (ii) ΠJΠ{

?
K is

bounded, and argue along the appropriate subsequence as in Step 2 and 3 in the proof of
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Lemma B.8.

For the first case, we have

T pβ0q “
pXJzÂnz

JXq´1pXJzÂnz
Jeq

b

pΦ1

`
δ

b

pΦ1

,

LMpβ0q “
XJpP ´ P̄ qe

a

Σ̂
`
δpXJpP ´ P̄ qXq

a

Σ̂
,

AR “
êJpP ´ P̄ qê

a

Υ̂

under the fixed alternative. On the event XJpP ´ P̄ qX ą 0, we can write

δpXJpP ´ P̄ qXq
a

Σ̂
“

δ
b

pXJpP ´ P̄ qXq´1Σ̂pXJpP ´ P̄ qXq´1

“
δ

b

pΦ2

.

By repeating the proof of Lemma B.9 for the other terms in the above expression beside

δ{

b

pΦ1 and δ{

b

pΦ2 (which do not depend on a1 and a2), we can write

¨

˚

˚

˚

˚

˝

T pβ0q

LMpβ0q

AR

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

δ{

b

pΦ1

δ{

b

pΦ2

0

˛

‹

‹

‹

‹

‚

` Rn,

where Rn “ Opp1q. Recall the definition pω̂1, ω̂2, ω̂3q
1:

¨

˚

˚

˚

˚

˝

ω̂1

ω̂2

ω̂3

˛

‹

‹

‹

‹

‚

“
1

b

b̂21 ` b̂22 ` b̂23

ˆ

¨

˚

˚

˚

˚

˝

1 ρ̂1 0

ρ̂1 1 ρ̂2

0 ρ̂2 1

˛

‹

‹

‹

‹

‚

´1{2 ¨

˚

˚

˚

˚

˝

b̂1

b̂2

b̂3

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

b̂1

b̂2

b̂3

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1 ρ̂1 0

ρ̂1 1 ρ̂2

0 ρ̂2 1

˛

‹

‹

‹

‹

‚

´1{2 ¨

˚

˚

˚

˚

˝

α̂1

α̂2

0

˛

‹

‹

‹

‹

‚

,

and note that pω̂1, ω̂2, ω̂3q
1 “ Opp1q. We have

0 ď 1 ´ E rϕ˚
ns

“ P
`

pω̂1T pβ0q ` ω̂2LMpβ0q ` ω̂3ARq
2

ă Cα

˘
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ď P
`

pω̂1T pβ0q ` ω̂2LMpβ0q ` ω̂3ARq
2

ă Cα, X
J

pP ´ P̄ qX ą 0
˘

` P
`

XJ
pP ´ P̄ qX ď 0

˘

ď P

¨

˝

˜

δ

d

1

pΦ1

`
1

pΦ2

ˆ

a

α̂JV̂ ´1α̂ ` Opp1q

¸2

ă Cα

˛

‚` P
`

XJ
pP ´ P̄ qX ď 0

˘

,

where

α̂ ”

¨

˚

˚

˚

˚

˝

α̂1

α̂2

0

˛

‹

‹

‹

‹

‚

, V̂ ”

¨

˚

˚

˚

˚

˝

1 ρ̂1 0

ρ̂1 1 ρ̂2

0 ρ̂2 1

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

δ{

b

pΦ1

δ{

b

pΦ2

0

˛

‹

‹

‹

‹

‚

“ δ

d

1

pΦ1

`
1

pΦ2

ˆ

¨

˚

˚

˚

˚

˝

α̂1

α̂2

0

˛

‹

‹

‹

‹

‚

,

and we used the fact that ω̂1 ˆ α̂1 ` ω̂2 ˆ α̂2 ` ω̂3 ˆ 0 “

a

α̂JV̂ ´1α̂. In addition, we have

pΦ1{Φ1
p

ÝÑ 1 and pΦ2{Φ2
p

ÝÑ 1 by (C.20), (C.26) and Lemma B.7, whence pΦ1 “ opp1q and

pΦ2 “ opp1q by (C.21) and (C.25). Therefore, we have

δ

d

1

pΦ1

`
1

pΦ2

ˆ

a

α̂JV̂ ´1α̂
p

ÝÑ 8p´8q, for δ ą 0 pδ ă 0q,

where we use the fact that }α̂}2 “ 1 by construction, V̂ ´1 p
ÝÑ V ´1 where

V ”

¨

˚

˚

˚

˚

˝

1 ρ1 0

ρ1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

,

by Lemma B.12, whence α̂JV̂ ´1α̂ can be bounded away from zero with probability approach-

ing one. Together with the fact that XJpP ´ P̄ qX ą 0 with probability approaching one by

(C.26) and ΠJΠ Ñ 8, this implies that limnÑ8 E rϕ˚
ns “ 1.

For the second case, by Lemma B.12, we have ρ̂1
p

ÝÑ ρ1 and ρ̂2
p

ÝÑ ρ2, and note

that ρ1 “ 0 in this case since ΠJΠ{K Ñ 0. In addition, similar to the proof of Step 3

of Lemma B.8, it can be shown that pΦ2 ù Φ̄2 for some random variable Φ̄2 such that

Φ̄2 ą 0 with probability one, and since pΦ1
p

ÝÑ 0 by (C.20), (C.21) and Lemma B.7, it
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follows that α̂1
p

ÝÑ 1 and α̂2
p

ÝÑ 0, by the continuous mapping theorem. Therefore, we have

ω̂1
p

ÝÑ 1, ω̂2
p

ÝÑ 0 and ω̂3
p

ÝÑ 0. Finally, as in the proof for the first case above, we have

T pβ0q “ δ{

b

pΦ1 ` Opp1q where pΦ1 “ opp1q, LMpβ0q “ Opp1q and AR “ Opp1q. It follows

that limnÑ8 E rϕ˚
ns “ 1. This concludes the proof.

D.5 Proof of Theorem A.1

We shall argue along the appropriate subsequence as in Step 4 of the proof of Lemma B.8.

Suppose we are under the local alternative that β ´ β0 “ δdn. We have

ρ̂1 “
1

a

Ψ̂Σ̂

ÿ

gPrGs

”´

X́J
rgsêrgs

¯ ´

X̂J
rgsêrgs

¯ı

“

c

Σ

Σ̂
ˆ

1
a

XJzÂnΩ̂ÂnzJX
XJzÂn

a

Ω̂

ˆ

c

Ω

Ω̂
ˆ

1
?
ΩΣ

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

X̂J
rgsêrgs

¯ı

,

and note the important fact that

˜

1
a

XJzÂnΩ̂ÂnzJX
XJzÂn

a

Ω̂

¸2

“ 1

when dz “ 1, and thus

ρ̂21 “
Σ

Σ̂
ˆ

Ω

Ω̂
ˆ

¨

˝

1
?
ΩΣ

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

X̂J
rgsêrgs

¯ı

˛

‚

2

.

By Lemmas B.7 and B.11, we have ρ̂21
p

ÝÑ ρ̄21. Together with the fact that ρ̂22
p

ÝÑ ρ22 by

Lemmas B.7 and B.11, this implies that ρ̂21 ` ρ̂22 ă 1 with probability approaching one. On

that event, direct calculation yields

ω̂1T pβ0q ` ω̂2LMpβ0q ` ω̂3AR
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“
T pβ0qα̂1p1 ´ ρ̂22q ´ T pβ0qρ̂1α̂2 ` LMpβ0qpα̂2 ´ ρ̂1α̂1q ` ARρ̂2pρ̂1α̂1 ´ α̂2q

a

1 ´ ρ̂21 ´ ρ̂22
a

α̂2
1p1 ´ ρ̂22q ´ 2ρ̂1α̂1α̂2 ` α̂2

2

.

We shall analyze each term in turn. To begin with, we note that, similar to the proof of

Step 4 of Lemma B.8, it can be shown that pΦ1 ù Φ̄1 for some random variable Φ̄1 such

that Φ̄1 ą 0 with probability one, and since pΦ2
p

ÝÑ 0 by (C.25), (C.26) and Lemma B.7, it

follows that α̂1
p

ÝÑ 0 and α̂2
p

ÝÑ 1, by the continuous mapping theorem. Note also that

T pβ0q “
pXJzÂnz

JXq´1

b

pXJzÂnzJXq´2

ˆ
1

a

XJzÂnΩ̂ÂnzJX
XJzÂn

a

Ω̂

ˆ

c

Ω

Ω̂
ˆ

1
?
Ω

ÿ

gPrGs

zJ
rgsẽrgs `

dn
b

pΦ1

δ

“ Opp1q,

and thus

T pβ0qα̂1p1 ´ ρ̂22q “ oP p1q.

Next, we note that

T pβ0qρ̂1 “
pXJzÂnz

JXq´1

b

pXJzÂnzJXq´2

ˆ

c

Σ

Σ̂
ˆ

Ω

Ω̂

ˆ
1

?
Ω

ÿ

gPrGs

zJ
rgsẽrgs ˆ

1
?
ΩΣ

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

X̂J
rgsêrgs

¯ı

` oP p1q.

In addition, we can show that

1
?
n
zJX ù N

´

π,ΩṼ ,Ṽ
z

¯

,
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which, combining with the fact that Ân{λn
p

ÝÑ A, implies that

pXJzÂnz
JXq´1

b

pXJzÂnzJXq´2

“ 1 ` oP p1q.

If follows that, by Lemmas B.7 and B.11,

T pβ0qρ̂1α̂2 “ ρ̄1 ˆ
1

?
Ω

ÿ

gPrGs

zJ
rgsẽrgs ` oP p1q.

Next, we note that

LMpβ0q “
XJpP ´ P̄ qe

a

Σ̂
` aδ ` oP p1q

“
1

?
Σ

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs `

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚` aδ ` oP p1q,

where the first equality is by (C.26) and Lemma B.7, and the second equality is by Lemmas

B.3 and B.7. It follows that

LMpβ0qpα̂2 ´ ρ̂1α̂1q “
1

?
Σ

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs `

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚` aδ ` oP p1q.

Next, we note that

AR “
1

a

pΥ

`

êJ
pP ´ P̄ qê ´ eJ

pP ´ P̄ qe
˘

`
1

a

pΥ

`

eJ
pP ´ P̄ qe ´ ẽJ

pP ´ P̄ qẽ
˘

`
1

a

pΥ
ẽJ

pP ´ P̄ qẽ

“
1

?
Υ

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs ` oP p1q.

by (C.22), (C.24), and Lemmas B.3 and B.7. It follows that

ARρ̂2pρ̂1α̂1 ´ α̂2q “ ´ρ2 ˆ
1

?
Υ

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs ` oP p1q
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by Lemma B.11. Finally, we have

1 ´ ρ̂21 ´ ρ̂22
p

ÝÑ 1 ´ ρ̄21 ´ ρ22,

α̂2
1p1 ´ ρ̂22q ´ 2ρ̂1α̂1α̂2 ` α̂2

2
p

ÝÑ 1.

Combining all the results, we have

ω̂1T pβ0q ` ω̂2LMpβ0q ` ω̂3AR

“
´ρ̄1

a

1 ´ ρ̄21 ´ ρ22
ˆ

1
?
Ω

ÿ

gPrGs

zJ
rgsẽrgs

`
1

a

1 ´ ρ̄21 ´ ρ22
ˆ

¨

˝

1
?
Σ

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs `

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚` aδ

˛

‚

`
´ρ2

a

1 ´ ρ̄21 ´ ρ22
ˆ

1
?
Υ

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs ` oP p1q.

Furthermore, we note that in the proof of Lemma B.10, we only require Π́ to satisfy

1

Ψ

ÿ

gPrGs

Π́J
rgsΠ́rgs “ Op1q,

1

Ψ
max
gPrGs

Π́J
rgsΠ́rgs “ op1q,

which is guaranteed by Assumptions 1 and 2. We also have

1

Ω

ÿ

gPrGs

zJ
rgszrgs “ Op1q,

1

Ω
max
gPrGs

zJ
rgszrgs “ op1q,

by Assumption 1 alone. Therefore, we can replace 1?
Ψ

řG
g“1 Π́

J
rgs
ẽrgs with

1?
Ω

ř

gPrGs
zJ

rgs
ẽrgs in

the proof of Lemma B.10. Note that in this way, Assumption 2 is no longer needed. We
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thus can follow the same argument in the proof of Lemma B.10 and obtain that

¨

˚

˚

˚

˚

˝

1?
Ω

ř

gPrGs
zJ

rgs
ẽrgs

1?
Σ

´

ř

gPrGs
Π̂J

rgs
ẽrgs `

ř

g,hPrGs2,g‰h Ṽ
J

rgs
Prg,hsẽrhs

¯

` aδ

1?
Υ

ř

g,hPrGs2,g‰h ẽ
J
rgs
Prg,hsẽrhs

˛

‹

‹

‹

‹

‚

ù N

¨

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˝

0

aδ

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

1 ρ̄1 0

ρ̄1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‚

.

The desired result then follows.

Next, suppose we are under the fixed alternative. From the proof above, we have

ω̂1T pβ0q ` ω̂2LMpβ0q ` ω̂3AR

“
p1 ` oP p1qq

a

1 ´ ρ21 ´ ρ22
LMpβ0q ` OP p1q

“
p1 ` oP p1qq

a

1 ´ ρ21 ´ ρ22
ˆ

¨

˝

δ
b

pΦ2

ˆ p1 ` oP p1qq ` OP p1q

˛

‚` OP p1q

by (C.26) and Lemma B.7, and note that pΦ2 “ oP p1q by (C.25) and Lemma B.7. If follows

that

pω̂1T pβ0q ` ω̂2LMpβ0q ` ω̂3ARq
2 p

ÝÑ 8,

and the desired result follows. This concludes the proof.

D.6 Proof of Theorem A.2

Under the local alternative, similar to the proof of Theorem A.1, we have

T pβ0q “
pXJzÂnz

JXq´1

b

pXJzÂnzJXq´2

ˆ
1

a

XJzÂnΩ̂ÂnzJX
XJzÂnΩ̂

1{2

ˆ Ω̂´1{2Ω1{2
ˆ Ω´1{2

ÿ

gPrGs

zJ
rgsẽrgs `

dn
b

pΦ1

δ “ Opp1q,

116



LMpβ0q “
1

?
Σ

¨

˝

ÿ

gPrGs

Π̂J
rgsẽrgs `

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚` aδ ` opp1q,

AR “
1

?
Υ

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs ` opp1q.

By repeating the proof of Lemma B.10 and ignoring 1?
Ψ

řG
g“1 Π́

J
rgs
ẽrgs (and thus Assumption

2 is not needed), we have

¨

˚

˝

LMpβ0q

AR

˛

‹

‚

ù N

¨

˚

˝

¨

˚

˝

aδ

0

˛

‹

‚

,

¨

˚

˝

1 ρ

ρ 1

˛

‹

‚

˛

‹

‚

,

by the Slutsky theorem. For ρ̂1, we have

ρ̂1 “
1

a

Ψ̂Σ̂

ÿ

gPrGs

”´

X́J
rgsêrgs

¯ ´

X̂J
rgsêrgs

¯ı

“

c

Σ

Σ̂
ˆ

1
a

XJzÂnΩ̂ÂnzJX
XJzÂnΩ̂

1{2

ˆ Ω̂´1{2Ω1{2
ˆ

1
?
Σ
Ω´1{2

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

X̂J
rgsêrgs

¯ı

,

where

1
a

XJzÂnΩ̂ÂnzJX
XJzÂnΩ̂

1{2
“ OP p1q,

and by Lemma B.11,

1
?
Σ
Ω´1{2

ÿ

gPrGs

”

`

zJ
rgsêrgs

˘

´

X̂J
rgsêrgs

¯ı

“
1

?
Σ
Ω´1{2

ÿ

gPrGs

E
”

`

zJ
rgsẽrgs

˘

´

Π̂J
rgsẽrgs

¯ı

` oP p1q.

Further note that the first term on the right-hand side of the above display is op1q since

ΠJΠ{K Ñ 0, so that ρ̂1
p

ÝÑ 0 by Lemma B.7. In addition, we have ρ̂2
p

ÝÑ ρ by Lemmas

B.7 and B.11. Finally, similar to the proof of Step 4 of Lemma B.8, it can be shown
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that pΦ1 ù Φ̄1 for some random variable Φ̄1 such that Φ̄1 ą 0 with probability one, and

since pΦ2
p

ÝÑ 0 by (C.25), (C.26) and Lemma B.7, it follows that α̂1
p

ÝÑ 0 and α̂2
p

ÝÑ 1,

by the continuous mapping theorem. This implies that ω̂1
p

ÝÑ 0, ω2
p

ÝÑ 1{
a

1 ´ ρ2 and

ω3
p

ÝÑ ´ρ{
a

1 ´ ρ2, whence

ω̂1T pβ0q ` ω̂2LMpβ0q ` ω̂3AR

“
1

a

1 ´ ρ2
LMpβ0q ´

ρ
a

1 ´ ρ2
AR ` opp1q

ù
1

a

1 ´ ρ2
N1 ´

ρ
a

1 ´ ρ2
N2,

where N1 and N2 are defined in Theorem A.2.

Under the fixed alternative, similar to the proof of Theorem A.1, we have limnÑ8 E rϕ˚
ns “

1. This concludes the proof.

E Additional Simulations

In this section, we present some additional simulation results to illustrate the effect of weak

low-dimensional IVs. We set ψ “ 30 so that the identification strength of many IVs remains

relatively strong, and ϕ “ 0 so that the identification strength of the one-dimensional IV is

rather weak. Figure 1 displays the power curves for K “ 100 and K “ 500, respectively,

which can be regarded as extensions of Panels A and B of Figure 3 in the main text. Overall,

the dominant performance of our combination test remains robust to different strengths of

one-dimensional IV, and the Wald test based on one-dimensional IV provides a nontrivial

gain in power (as seen from the noticeable gaps between the power curves of ϕ˚
n and the LM

test). This gain arises from its correlation with the LM statistic, in line with the theoretical

result stated in Theorem A.1.
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F Additional Empirical Applications

In this section, we consider the return to education application, using the dataset of Angrist

and Krueger (1991). In this application, the outcome variable is the log weekly wages and

the endogenous variable is the years of schooling. We follow Mikusheva and Sun (2022) and

Lim et al. (2024) to consider two specifications with 180 and 1530 instruments. The set of

180 instruments consists of 30 quarter and year of birth interactions (QoB–YoB) and 150

quarter and place of birth interactions (QoB-PoB). The set of 1530 instruments includes all

interactions among QoB-YoB-PoB. The quantitative implications obtained from Table 1 and

Figure 2 are in line with the discussion in Section 2 of the main text. However, we reiterate

that, although the low-dimensional IVs (and therefore β̂1 and the Wald confidence interval)

are identical across the two specifications by construction, we are not attempting to ob-

tain improved inference based on pooling statistics across specifications, and our theoretical

results do not justify such an approach.

119



Figure 1: Power Curve of the combination, Wald, and jacknife LM tests.

Notes: This figure displays the power curves for our combination test ϕ˚
n along with those for the compo-

nent Wald and jacknife LM tests, at different values of K (the dimension of the many IVs), ψ “ 30 (the
identification strength of the many IVs is relatively strong), and ϕ “ 0 (the identification strength of the
one-dimensional IV is weak). The horizontal axis represents the deviations in the parameter of interest from
the maintained hypothesis, that is, we are interested in testing H0 : β “ β0 against H1 : β ‰ β0, and
δ “ β ´ β0. See Section 5 in the main text for a detailed description of the simulation setup. All results are
based on 5, 000 simulations.
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K “ 180 K “ 1530
ρ̂1 0.489 0.236
ρ̂2 ´0.170 ´0.200

σ̂pβ̂1q{σ̂pβ̂2q 1.191 0.807

β̂1 0.098 0.098
Wald CI (0.059, 0.138) (0.059, 0.138)

β̂2 0.099 0.084
LM CI (0.066, 0.132) (0.035, 0.133)

β̂˚ 0.097 0.093
Comb. CI (0.066, 0.127) (0.059, 0.126)

Table 1: Point estimates and confidence intervals: returns to education.

Notes: This table reports the estimation and inference results for the return to education example using
the Angrist and Krueger (1991) dataset, shown separately for specifications with K “ 180 instruments and
K “ 1530 instruments. The IV set in the column labeled “K “ 180” consists of 30 quarter and year of
birth interactions (QoB–YoB) and 150 quarter and place of birth interactions (QoB–PoB), while the IV set
in the column with “K “ 1530” includes full set of interactions among QoB–YoB–PoB. See Appendix D in
Lim et al. (2024) for a more detailed description of data and this empirical application. The point estimates
are obtained from the standard two-stage least squares (TSLS) estimator with the three-dimensional QoB

instruments, β̂1, and, in addition, from the leave-one-out estimator, β̂2, which makes use of all base IVs.
Wald CI and LM CI denote the confidence intervals based on β̂1 and β̂2, respectively. The estimator β̂˚

is the combined estimator for β, defined in Section 4.3 of the main text. It is essentially the midpoint of
the confidence interval in (4.4), which is obtained from our combination test and labeled as “Comb. CI”
in the table. In addition, ρ̂1 and ρ̂2 denote estimates of the asymptotic correlation between the Wald and
LM statistics, and between the LM and AR statistics, respectively. Finally, σ̂pβ̂1q{σ̂pβ̂2q denotes the ratio of

standard errors of β̂1 and β̂2. All displayed numbers are rounded to three decimal places.
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Figure 2: Realized percentage reduction in confidence interval length: returns to education

Notes: This figure shows, for each specification in the returns to education example, the observed percentage
decrease in confidence interval length (Combined CI versus Wald CI, as in Table 1, and indicated by “o” in

figure legends) plotted as a point against the standard error ratio (σ̂pβ̂1q{σ̂pβ̂2q in Table 1). Also shown is
the theoretical lower bound for the reduction (indicated by “p” in figure legends), analogous to Figure 1 in
the main text, but now computed using the specification-specific estimate ρ̂1, as reported in Table 1. Here,
“K180” refers to the specifications with K “ 180 instruments, and “K1530” refers to the specifications with
K “ 1530 instruments. The horizontal axis is the ratio of standard deviations (errors) of β̂1 and β̂2. The
vertical axis is the reduction in the length of confidence interval in percentage points. As a final remark,
note that the actual numerical values of the relevant quantities in Table 1, rather than the rounded values
shown there, are used to produce Figure 2.
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