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Abstract

Empirical instrumental variables (IV) studies often report separate results based

on low-dimensional instruments and many base instruments. This paper proposes a

combination test that integrates these commonly reported statistics. The test linearly

combines a cluster-robust Wald statistic based on low-dimensional IVs with leave-

one-cluster-out Lagrangian Multiplier (LM) and Anderson-Rubin (AR) statistics con-

structed from many IVs. Under strong identification of the low-dimensional IVs, we

establish joint asymptotic normality and asymptotic optimality of the proposed test.

The procedure yields costless efficiency improvements, automatically adapts to weak

identification of many instruments, and is accompanied by a practical rule of thumb

for assessing efficiency gains.
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1 Introduction

Empirical applications of instrumental variables (IV) regressions in economics often involve

multiple sets of candidate instruments, some having dimensionality large relative to the

sample size, whereas others do not. A canonical example is the influential study by Angrist

and Krueger (1991), in which they estimate the causal effect of schooling on wages using

three quarter-of-birth (QoB) dummies as instruments. In pursuit of potential efficiency

gain, they further interact the three QoB instruments with state- and year-of-birth dummies,

yielding 180 instruments in total (the original QoB dummies plus all interactions). The paper

reports estimation and inference results from both the three-instrument and the expanded

180-instrument specifications.

A different but related set of examples arises with shift-share IVs, which are now widely

used in labor, public, development, macroeconomics, international trade, and finance.1 As

noted by Goldsmith-Pinkham et al. (2020), a shift-share IV can be interpreted as a particular

way of combining many base IVs under appropriate conditions.2 In their example following

Card (2009), 38 base IVs (respective shares of immigrants from 38 home countries) are

used to build the shift-share instrument for estimating the (negative) inverse elasticity of

substitution between immigrants and natives in a sample of size 124. As in Angrist and

Krueger (1991), the authors present results based on the one-dimensional shift-share IV as

well as on the full set of base IVs. Additionally, they adopt recent empirical practice by

reporting results from alternative IV estimators designed to reduce potential bias from the

use of many instruments (e.g., see Table 6 in Goldsmith-Pinkham et al. (2020)).

As illustrated above, empirical studies commonly report results based on low-dimensional

IVs, which typically utilize a subset or an aggregate of a potentially rich instrument set, along

1See, for instance, Bartik (1991), Blanchard, Katz, Hall, and Eichengreen (1992), Adao, Kolesár,

and Morales (2019), Goldsmith-Pinkham, Sorkin, and Swift (2020), Borusyak, Hull, and Jaravel (2022),

Borusyak, Hull, and Jaravel (2025), and references therein.
2For instance, the identification strategy in Goldsmith-Pinkham et al. (2020) relies on the assumption of

exogenous shares.
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with results that adhere to the full set of base IVs. This naturally raises the question of

whether one can systematically combine these standard estimation and inference outputs

to construct improved IV inference, while retaining the respective strengths of approaches

along both lines. A further practical concern is what additional steps empirical researchers

must undertake to implement such a combined procedure and how much such a proposal

can enhance existing methods in a way that matters empirically.

This paper aims to offer a constructive solution to the above questions on improving effi-

ciency for IV regressions. Specifically, we consider an efficiently combined inference procedure

of three commonly reported test statistics for IV regressions in an arguably general clustered

setting, where the data consist of many clusters of bounded size. The core component

statistics are a standard cluster-robust Wald statistic associated with the low-dimensional

IVs, a leave-one-cluster-out Lagrangian Multiplier (LM) statistic, and a leave-one-cluster-out

Anderson-Rubin (AR) statistic. The LM and AR statistics are based on the many base IVs,

and the leave-one-cluster-out construction is employed to remove the many-IV bias in the

presence of within-cluster error dependence.

Two clarifications are in order. First, we do not seek to derive the optimal test statistic

by searching over all possible combinations of a given set of base IVs, nor do we com-

bine outputs across alternative specifications that use different sets of base IVs or different

low-dimensional IVs. Instead, we study how to combine existing, commonly reported test

statistics derived from a given set of many IVs with their prescribed low-dimensional coun-

terparts. Nevertheless, we attribute a notion of asymptotic optimality to the combination

test in the sense of Müller (2011). Second, accommodating cluster sizes that grow with the

sample is technically demanding in our current setting and is beyond the scope of this paper.

As it turns out, an optimal way to combine the three component test statistics is, in fact,

through a linear combination of them. Specifically, we first show that the Wald, LM, and

AR statistics are jointly asymptotically normal under the null hypothesis (and local alter-

natives), assuming that the low-dimensional IVs strongly identify the parameter of interest.

4



Standard optimal testing theory then implies that the uniformly most powerful unbiased

(UMPU) test in the limiting problem rejects for large absolute values of an appropriate

linear combination of the three limiting Gaussian observations.3 Our proposed test, as a

function of the three statistics, is asymptotically that UMPU test, thus yielding a linear

combination of the underlying Wald, LM, and AR statistics.

A direct consequence of the combination construction is a costless efficiency gain com-

pared with the conventionally reported Wald test that uses only the low-dimensional IVs,

since one can always place full weight on that component and disregard the information

in the AR and LM statistics. Notably, the combination test adapts to the identification

strength of the many base IVs. When the parameter of interest is weakly identified under

many IVs in the sense of Mikusheva and Sun (2022), our test reduces to the component

Wald test, and thus remains valid and as powerful as prior to combination.

The rationale for determining the optimal weights in the combination test is not immedi-

ately obvious. To understand this, we rely on three properties of the joint Gaussian limiting

distribution of the three component statistics. First, the local alternative parameter appears

in the limiting noncentralities of both the Wald and LM statistics, but with distinct scaling

factors that closely reflect the relative identification strength under low-dimensional versus

many IVs. Second, pairwise correlations among the three statistics are the key determinants

of the covariance matrix in the Gaussian limit. Third, the scalar sufficient statistic for the

local alternative parameter can be expressed as a linear combination of suitably decorrelated

Gaussian components. Together with the standard UMPU testing theory, these three obser-

vations imply that the optimal weights are proportional to the relevant scaling factors and,

in particular, should be less dispersed when correlations are small.

Furthermore, the confidence interval implied by the combination test has the usual “esti-

mator plus and minus a standard error times a critical value” form. Its center is an estimator

3See, for instance, Section 4.2 in Lehmann and Romano (2006) and Lemma 2.2 in Lim, Wang, and Zhang

(2024a) for the formal development of such arguments.
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that linearly combines a standard GMM estimator based on the low-dimensional IVs with

a leave-one-cluster-out estimator based on the many base IVs and the AR statistic, using

weights that capture both the relative identification strength from the two IV sets and the

UMPU weights. The efficiency gain manifests itself as an almost surely shorter confidence

interval. We measure this gain by the percentage reduction in the length of the resulting

confidence interval relative to that of the Wald test. As an illustration, in the immigrant

enclave application of Card (2009), the combination procedure shortens the length by be-

tween 8% and 26%. This reduction depends mainly on the identification strengths of the

low-dimensional and many IVs, together with the limiting correlations between the Wald

and LM statistics and between the LM and AR statistics. In Section 2, we translate these

relationships into a practical rule of thumb and illustrate it using the Card (2009) application.

Relation to the literature. This paper contributes to a large literature on many (weak)

instruments.4 It is especially related to Lim et al. (2024a), which, following Andrews (2016),

introduces a jackknife conditional linear combination (CLC) test that is robust to weak

identification, many instruments, and heteroskedasticity. They propose a linear combination

of jackknife AR, jackknife LM, and orthogonalized jackknife LM tests to ensure good power

performance under different identification scenarios. Their analysis, however, focuses on

many-IV settings, and hence is not directly applicable to our framework. In contrast, we

also incorporate low-dimensional IVs, which are commonly encountered in practice, in a more

4See, for instance, Kunitomo (1980), Morimune (1983), Bekker (1994), Donald and Newey (2001), Chao

and Swanson (2005), Stock and Yogo (2005), Han and Phillips (2006), Andrews and Stock (2007), Hansen,

Hausman, and Newey (2008), Newey and Windmeijer (2009), Anderson, Kunitomo, and Matsushita (2010),

Kuersteiner and Okui (2010), Anatolyev and Gospodinov (2011), Okui (2011), Belloni, Chen, Chernozhukov,

and Hansen (2012), Carrasco (2012), Chao, Swanson, Hausman, Newey, and Woutersen (2012), Hausman,

Newey, Woutersen, Chao, and Swanson (2012), Kolesár (2013), Hansen and Kozbur (2014), Carrasco and

Tchuente (2015), Wang and Kaffo (2016), Kolesár (2018), Evdokimov and Kolesár (2018), Sølvsten (2020),

Chao, Swanson, and Woutersen (2023), Lim et al. (2024a), Boot and Nibbering (2024), Yap (2024), among

others.
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general clustered setting. Under our assumption of strong identification for low-dimensional

IVs, the resulting test remains adaptive to the strength of many base IVs. Similarly, in the

context of causal inference under covariate-adaptive randomization, Jiang, Li, Miao, and

Zhang (2025) proposes a new estimator of average treatment effect (ATE) using an optimal

linear combination of estimators with and without regression adjustments.

In settings with many instruments and clustered data, how to perform robust estima-

tion and inference is not straightforward. Frandsen, Leslie, and McIntyre (2025) propose a

cluster-robust jackknife IV estimator (CJIVE) and show that it remains consistent under

many instruments and clustering, but they do not derive a consistent cluster-robust vari-

ance estimator or a valid inference procedure. As pointed out by Chao et al. (2012), when

the number of (possibly weak) instruments is large, both linear and quadratic components

contribute to the asymptotic variance, and the quadratic component may dominate. The

standard cluster-robust two-stage least squares (TSLS) variance estimator based on a jack-

knifed instrument,5 as implemented in Stata and commonly used in practice, neglects the

quadratic term and therefore becomes invalid when many instruments are present.

On the other hand, Ligtenberg (2023) develops cluster jackknife AR and LM tests that

are robust to weak identification, many instruments, and clustering. In the same spirit,

our paper invokes cluster-robust variance estimators for AR and LM statistics in IV models

with many instruments, a fixed number of controls, and clustered data. Recent work further

indicates that suitably constructed bootstrap methods can produce more reliable inference

than those based on asymptotic approximations in IV models under heteroskedasticity or

clustering.6

5This constructed one-dimensional IV predicts unit i’s endogenous variable by leaving out i’s own obser-

vation or i’s entire cluster; see, e.g., Section 3.2 of Chyn, Frandsen, and Leslie (2024) in the case of judge

design. The resulting IV estimator coincides numerically with JIVE or CJIVE, so both linear and quadratic

variance terms must be taken into account.
6See, for instance, Davidson and MacKinnon (2010), Finlay and Magnusson (2019), Lim, Wang, and

Zhang (2024b), MacKinnon (2021), and Wang and Zhang (2024), among others.
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Lastly, as highlighted by Chao et al. (2023), conducting estimation and inference is

challenging when both the number of instruments and the number of controls are large.7

In this paper, we focus on models with a fixed number of controls and leave the case of

many-IVs-many-controls for future research.

Structure of the paper: Section 2 details the rationale behind the proposed rule of

thumb and demonstrates its use in an empirical application; practitioners mainly interested

in applications may focus on this section directly. Section 3 introduces the model and key

preliminaries, while Section 4 develops the large-sample theory for the combination test and

formalizes its theoretical properties. Section 5 provides additional simulation results, and

Section 6 concludes. An additional case with weakly identified low-dimensional IVs alongside

strongly identified many IVs, as well as all proofs, is presented in the Online Appendices.

Notation. We write rns ” t1, . . . , nu and rGs ” t1, . . . , Gu. Let A be an nˆm matrix and

let tngugPrGs be positive integers with
řG

g“1 ng “ n. We denote by Args the g-th row-wise

block of A, of dimension ng ˆ m. When A is a n ˆ n square matrix, we denote by Arg,hs

the pg, hq-th block of A. For a positive semi-definite square matrix A, denote its largest

and smallest eigenvalues by λmaxpAq and λminpAq, respectively. Let C be a generic positive

constant independent of n, whose value may change from line to line. For brevity, we write
ř

g,hPrGs2,g‰h :“
ř

gPrGs

ř

hPrGs,h‰g.

2 Rule of Thumb and Empirical Illustration

In this section, we develop a practical rule of thumb that can be directly applied to reported

estimates and standard errors from regressions using low-dimensional IVs, as well as from

regressions employing many IVs. We illustrate its empirical relevance using the empirical

7For advances in estimation and inference methods in such high-dimensional IV and control settings,

see Ackerberg and Devereux (2009), Kolesár (2013), Evdokimov and Kolesár (2018), Chao et al. (2023),

Mikusheva and Sun (2024), Boot and Nibbering (2024), and Yap (2024), among others.
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application in Goldsmith-Pinkham et al. (2020, Section VII), which builds on Card (2009).

As outlined in the Introduction, we measure the efficiency gain from the combination test

by the percentage reduction in the length of its confidence interval relative to that of the Wald

test in large samples. Section 4.3 will formally establish two key properties of this measure.

First, there is no reduction in interval length only when the relative identification strength of

the many IVs to the low-dimensional IVs exactly matches the limiting correlation between

the corresponding Wald and LM statistics. Consequently, the combination test almost always

yields a shorter confidence interval, so we recommend that practitioners routinely perform

the additional step of combination inference.

However, the percentage reduction generally depends on several primitive quantities:

the identification strengths of both low-dimensional and many IVs, as well as the limiting

correlations between the Wald and LM statistics and between the LM and AR statistics.

This complexity makes it difficult to convert the reduction directly into a simple practical

rule. The second property addresses this issue: the percentage reduction is monotonically

increasing in the absolute correlation between the LM and AR statistics, which implies a

lower bound on the efficiency gain that depends only on the correlation between the Wald

and LM statistics and the ratio of the standard deviations of the standard GMM estimator

using low-dimensional IVs to the leave-one-cluster-out estimator using the many IVs (or,

equivalently, the relative strength of the many IVs to the low-dimensional IVs).

Figure 1 plots the lower bound as a function of the standard deviation ratio for different

values of ρ1, the limiting correlation between the Wald and LM statistics. Two observations

emerge. First, for any fixed ρ1, we show theoretically that whenever the standard deviation

ratio exceeds ρ1, the lower bound on efficiency gains increases with the ratio, reflecting the

fact that the combination test exploits the additional precision provided by the LM statis-

tic. Second, once the standard deviation ratio exceeds one, the lower bound decreases as ρ1

increases, because the LM statistic then contributes relatively little additional information

beyond the highly correlated Wald statistic. As a simple rule of thumb that only requires a
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back of envelope calculation based on the reported standard errors, we propose: for empir-

ically plausible values of ρ (between ´0.7 and 0.7), whenever the standard error from the

regression with low-dimensional IVs divided by that from the regression with many IVs is

greater than 1.05, the corresponding confidence interval is reduced by at least 10%.8

To illustrate the empirical relevance of efficiency gains and the associated rule of thumb,

we implement the combination test in an empirical application that estimates the (negative)

inverse elasticity of substitution between immigrants and natives, following Card (2009). As

in Goldsmith-Pinkham et al. (2020, Section VII), we examine two separate sets of results

by skill group: high school equivalent workers and college equivalent workers. The analysis

is based on cross-sectional regressions for each skill group in the year 2000 in 124 cities.

The dependent variable is the residual log wage gap between immigrant and native men,

and the main regressor of interest is the log ratio of immigrant to native hours of both

men and women within the same skill group. Because a positive labor demand shock to

immigrants can simultaneously increase their earnings and labor supply relative to natives,

this can introduce a potential endogeneity. However, such a shock draws immigrants into a

location disproportionally relative to natives, thus motivating the use of a Bartik instrument

to address endogeneity. To construct the Bartik instrument, immigration shares from 38

countries (groups) in 1980 are used as the base instruments, and the final instrument is

formed as a weighted average of these country-specific shares, where the weights are given

by the number of arrivals to the United States between 1990 and 2000 by origin group and

skill group (see Goldsmith-Pinkham et al. (2020) for further details).

Table 1 reports the point estimates obtained from the standard two-stage least squares

(TSLS) estimator using the Bartik instrument, β̂1, along with those from the leave-one-out

estimator, β̂2, which relies on all base IVs. We present results separately for specifications

8In additional (unreported) plots for ρ P r´0.99, 0.99s, the confidence interval is at least 10% shorter

whenever the standard deviation ratio exceeds 1.11 (with corresponding thresholds 1.05 for 5% and 1.25 for

20%).
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that include and exclude city-level controls. As expected and consistent with the findings

in Goldsmith-Pinkham et al. (2020), the estimates are broadly similar within each skill

group. However, in every specification, the confidence intervals constructed from the TSLS

estimator (Wald CI) differ to some extent from those based on β̂2 (LM CI). This discrepancy

is partly due to the different standard errors of the two estimators, which we exploit in our

combination test to obtain strictly shorter confidence intervals across all specifications. For

example, for workers with college equivalent skills, our confidence interval is roughly 8% and

26% shorter, respectively, than the Wald CI in the specifications with and without controls.

Figure 2 displays the realized percentage reduction in confidence interval length achieved

by our combination test, together with the theoretical lower bounds for that reduction,

analogous to Figure 1, but calculated using the specification-specific estimate ρ̂1 of the

limiting correlation between the Wald and LM statistics. Two observations are worth noting.

First, the theoretical lower bounds closely track the actual percentage reductions across

specifications, even though these bounds are derived solely from the Wald and LM statistics.

It indicates that, in this empirical setting, combining the AR statistic yields little additional

efficiency gain. This aligns with our earlier theoretical discussion that efficiency gains increase

monotonically with the absolute correlation between LM and AR statistics, and, in fact, the

corresponding consistent estimates ρ̂2 are not particularly large in any specification.

Second, Figure 2 clearly illustrates our proposed rule of thumb. All estimated ρ̂1 values

fall within r´0.7, 0.7s. When the standard error ratio exceeds 1.05, the actual reduction

in the length of the confidence interval is 26% (specification without controls for college

equivalent workers), much above the rule-of-thumb benchmark 10%. In contrast, when the

standard error ratio remains at or below 1.05, the improvements are modest, reflecting the

converse of our rule of thumb. Nevertheless, even in these cases, our combination test can

still deliver confidence intervals that are about 8% (specification with controls for college

equivalent workers), 5% (specification without controls for high school equivalent workers)

and 1% (specification with controls for high school equivalent workers) shorter.
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3 Model and Preliminaries

3.1 Setup

We consider a clustered dataset withG clusters and denote the size of the g-th cluster as ng for

g P rGs. We index observations by clusters followed by units. Denote Ig “ rNg´1`1, ¨ ¨ ¨ , Ngs,

where N0 “ 0, Ng “
řg

g1“0 ng1 , and NG “ n. Then, tIgugPrGs forms a partition of rns, and if

i P Ig, this means that the i-th observation belongs to the g-th cluster. We then consider a

linear IV regression with clustered data

Ỹi,g “ X̃i,gβ ` WJ
i,gγ ` ẽi,g, (3.1)

where we denote Ỹi,g P ℜ, X̃i,g P ℜ, and Wi,g P ℜdw as an outcome variable, an endogenous

regressor, and exogenous regressors, respectively. Further denote Z̃i,g P ℜK as the IVs for

X̃i,g. The first-stage equation can be written as

X̃i,g “ Π̃i,g ` Ṽi,g, (3.2)

where Π̃i,g “ EpXi,g|tZ̃j,g,Wj,gujPIgq is not assumed to be linear in Z̃i,g and Wi,g. We assume

that Eẽi,g “ 0 and EṼi,g “ 0, and
!

ẽi,g, Ṽi,g

)

iPIg ,gPrGs
are independent between clusters, but

allow them to have a general dependence structure within each cluster. Throughout the

paper, the dimension dw ofWi,g is assumed to be fixed. If researchers want to include cluster

fixed effects in the model, they can obtain (3.1) by first demeaning the data (outcome,

endogenous regressor, controls, and instruments) at the cluster level. We assume that K,

the dimension of Z̃i,g, diverges to infinity with the sample size, while dw remains fixed.

Let Ỹ , X̃, Π̃, W , Z̃ be n ˆ 1, n ˆ 1, n ˆ 1, n ˆ dw, and n ˆ K-dimensional vectors

and matrices formed by Ỹi,g, X̃i,g, Π̃i,g, Wi,g, and Z̃i,g, respectively. More specifically, Ỹ is

constructed by stacking up Ỹi,g across i P Ig followed by g P rGs, and similarly for X̃, Π̃, W

and Z̃. We then partial out W from Ỹ , X̃, and Z̃, so that the model in (3.1)-(3.2) can be
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written in a vector form as

Y “ Xβ ` e, X “ Π ` V, (3.3)

where Y “ MW Ỹ , X “ MW X̃, Π “ MW Π̃, e “ MW ẽ, V “ MW Ṽ , MW “ In ´ PW , PW “

W pWJW q´1WJ and In denotes an n ˆ n identity matrix. We further denote Z “ MW Z̃.

In addition, besides the K-dimensional many IVs Z̃i,g P ℜK , we assume that there is

another set of low-dimensional IVs

z̃i,g “ fi,gpZ̃,W q P ℜdz ,

where tfi,gp¨quiPIg ,gPrGs is a list of known nonstochastic functions of dz dimension. Specifically,

as illustrated by the example of Angrist and Krueger (1991) in the Introduction, researchers

may begin with certain low-dimensional base IVs z̃i,g, such as the three QoB dummies,

and construct a large number of new IVs by taking the interaction between the base IVs

and control variables Wi,g (e.g., state- and year-of-birth dummies in Angrist and Krueger

(1991)). Then, z̃i,g is a subset of the K-dimensional many IVs Zi,g for the model in (3.3),

which include both the low-dimensional base IVs and interacted IVs. The second example

of z̃i,g is the widely used shift-share IV. As pointed out by Goldsmith-Pinkham et al. (2020),

under their identification strategy that treats the shares as exogenous, the one-dimensional

shift-share IV can be regarded as a weighted average of high-dimensional base IVs, i.e.,

z̃i,g “
řK

k“1 Z̃i,ghi,k. For instance, in the study of China shock by Autor, Dorn, and Hanson

(2013), the observations are clustered at the level of US commuting zone with a short panel

data setting. Then, according to our notation, the employment share of the US industry

k in the commuting zone g in a certain initial time period i “ 0 corresponds to the base

IVs Z̃0,g (i.e., Z̃i,g “ Z0,g for all i), the supply shock from China to the US industry k in

the time period i corresponds to the weight hi,k, and K is the total number of industries.

Let z̃ be the n ˆ dz-dimensional matrix formed by z̃i,g, and denote z “ MW z̃. In many
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empirical applications, the dimension dz is just one, but our setup also allows for dz ą 1,

while maintaining the requirement that dz is fixed with respect to the sample size n.

We focus on the model with a scalar endogenous variable for two reasons. First, in

many empirical applications of IV regressions, there is only one endogenous variable (as can

be seen from the surveys by Andrews, Stock, and Sun (2019) and Lee, McCrary, Moreira,

and Porter (2022)). Second, as we assume at least the low-dimensional IVs provide strong

identification, our results can be extended to testing of scalar restrictions with multiple

endogenous variables by applying standard subvector inference methods, without appealing

to a projection-based inference approach.9 If the identification strength for many IVs is

mixed, our method could potentially be extended by following the approach of Chao et al.

(2012). We leave this extension for future research.

The null and alternative hypotheses studied are H0 : β “ β0 against H1 : β ‰ β0.

3.2 Test Statistics

It is possible to conduct inference directly based on the low-dimensional IVs. Specifically,

given a dz ˆ dz positive definite weighting matrix Ân, the generalized method of moments

(GMM) estimator can be written as

β̂1 “ pXJzÂnz
JXq

´1
pXJzÂnz

JY q.

9For weak-identification-robust subvector inference, in general, one may use a projection approach (Dufour

and Taamouti, 2005) after implementing inference on the whole vector of endogenous variables. However, the

projection approach typically leads to conservative inference. Alternative subvector inference methods for

IV regressions (e.g., see Guggenberger, Kleibergen, Mavroeidis, and Chen (2012), Andrews (2017), Guggen-

berger, Kleibergen, and Mavroeidis (2019, 2021), and Wang and Doko Tchatoka (2018)) provide a power

improvement over the projection approach under a fixed number of instruments (some of these methods

further require conditional homoskedasticity). However, whether they can be applied to the setting of many

weak instruments is unclear.
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It is also possible to construct test statistics using the K-dimensional IVs (i.e., the many

IVs). Denote P “ ZpZJZq´1ZJ as the projection matrix of Z. Then, the leave-one-cluster-

out estimator of β is denoted as β̂2 and defined as

β̂2 “

¨

˝

ÿ

g,hPrGs2,g‰h

XJ
rgsPrg,hsXrhs

˛

‚

´1¨

˝

ÿ

g,hPrGs2,g‰h

XJ
rgsPrg,hsYrhs

˛

‚

“
`

XJ
pP ´ P̄ qX

˘´1 `
XJ

pP ´ P̄ qY
˘

,

where P̄ is the block diagonal matrix corresponding to P such that the g-th block on its

diagonal is Prg,gs.

Given β̂1 and β̂2, we define the estimator β̂ as

β̂ “
:Φ
1{2
2

9Φ
1{2
1 ` :Φ

1{2
2

ˆ β̂1 `
9Φ
1{2
1

9Φ
1{2
1 ` :Φ

1{2
2

ˆ β̂2,

where 9Φ1 and :Φ2 are the variance estimators for β̂1 and β̂2, respectively, to be defined later.

We show that β̂ is consistent whenever either the low-dimensional IV estimator β̂1 or the

many-IV estimator β̂2 is consistent. Because researchers do not need to know which of the

two estimators is consistent when constructing β̂, the estimator β̂ is doubly robust.

We then use the doubly robust estimator β̂ to re-estimate the variances associated with

β̂1 and XJpP ´ P̄ qpY ´ Xβq, denoted by pΦ1 and Σ̂, respectively, and defined later. These

variance estimates are used to construct the Wald statistic and the leave-one-cluster-out

jackknife Lagrange multiplier (LM) statistic,

T pβ0q “
pXJzÂnz

JXq´1XJzÂnz
Jepβ0q

b

pΦ1

“
β̂1 ´ β0
b

pΦ1

,

LMpβ0q “
XJpP ´ P̄ qepβ0q

a

Σ̂
,

where epβ0q “ Y ´ Xβ0.

15



Lastly, as pointed out by Hausman et al. (2012), Lim et al. (2024a), and Mikusheva and

Sun (2024), it is possible to use the jackknife AR statistic to further improve the efficiency of

the jackknife LM statistic. In the case with clustered data, we define the leave-one-cluster-out

jackknife AR statistic as

AR “
êJpP ´ P̄ qê

a

Υ̂
, (3.4)

where Υ̂ is a consistent variance estimator for the numerator defined later, and ê “ Y ´Xβ̂.

We use the consistent estimator β̂ instead of the null hypothesis β0 to construct the AR

statistic for at least two reasons: (1) the two choices are asymptotically equivalent under

strong identification and local alternatives; and (2) as shown by Lim et al. (2024a), even

under strong identification and fixed alternatives, the optimal combination test based on the

jackknife LM and AR statistics—when the AR is constructed using β0—can lead to a non-

monotonic power curve, while this can be avoided if the AR statistic is constructed using β̂.

Consequently, the AR statistic in (3.4) does not depend on the null hypothesis β0. Instead,

it should be viewed as a normalized estimator of zero, which is used solely to improve the

efficiency of our procedure.

In the next section, we illustrate how to optimally combine the three test statistics T pβ0q,

LMpβ0q, and AR. The corresponding variance estimators p 9Φ1, :Φ2, pΦ1, Σ̂, Υ̂q are introduced

in Section 4.1.

3.3 Combination Test

Given the three test statistics pT pβ0q, LMpβ0q, ARq, we seek to combine them in a theoret-

ically justified way that can improve on the Wald test based only on the low-dimensional

IVs. The key insight of our paper is that under certain local alternative β ´ β0 “ δdn with
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some deterministic sequence dn Ó 0, we have the following joint limiting distribution:

¨

˚

˚

˚

˚

˝

T pβ0q

LMpβ0q

AR

˛

‹

‹

‹

‹

‚

ù N

¨

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˝

a1δ

a2δ

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

1 ρ1 0

ρ1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‚

(3.5)

for some a1, a2, ρ1 and ρ2 to be defined later. In this limiting problem, the UMPU level-α

test for the default null hypothesis δ “ 0 against two-sided alternatives, which are solely

based on the limiting three-dimensional normal random vector, can be obtained by invoking

standard hypothesis-testing results (see, for example, Section 4.2 of Lehmann and Romano

(2006)), and is stated in Proposition 3.1 below.

Proposition 3.1. Suppose one observes pN1,N2,N3q, which follows the limiting distribution

in (3.5) with ρ21 ` ρ22 ă 1 and wants to test H0 : δ “ 0 against H1 : δ ‰ 0 for known values

of pa1, a2, ρ1, ρ2q, then UMPU level-α test rejects if

˜

b1Ñ1 ` b2Ñ2 ` b3Ñ3
a

b21 ` b22 ` b23

¸2

ě Cα,

where Cα is the p1´αq percentile of a chi-squared random variable with one degree of freedom,

¨

˚

˚

˚

˚

˝

Ñ1

Ñ2

Ñ3

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1 ρ1 0

ρ1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

´1{2¨

˚

˚

˚

˚

˝

N1

N2

N3

˛

‹

‹

‹

‹

‚

, and

¨

˚

˚

˚

˚

˝

b1

b2

b3

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1 ρ1 0

ρ1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

´1{2¨

˚

˚

˚

˚

˝

a1

a2

0

˛

‹

‹

‹

‹

‚

.

The corresponding power function for the UMPU test is

P
ˆ

χ2
1

ˆ

δ2
p1 ´ ρ22qa21 ´ 2ρ1a1a2 ` a22

1 ´ ρ21 ´ ρ22

˙

ě Cα

˙

,

where χ2
1pλq is a noncentral chi-squared with noncentrality λ and one degree of freedom.

In light of this optimal testing result in the limiting problem, one may wish to propose
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implementing the following test:

ϕo
n “ 1

␣

pω1T pβ0q ` ω2LMpβ0q ` ω3ARq
2

ě Cα

(

” ϕ˚
pT pβ0q, LMpβ0q, ARq , (3.6)

where

¨

˚

˚

˚

˚

˝

ω1

ω2

ω3

˛

‹

‹

‹

‹

‚

“
1

a

b21 ` b22 ` b23

¨

˚

˚

˚

˚

˝

1 ρ1 0

ρ1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

´1{2¨

˚

˚

˚

˚

˝

b1

b2

b3

˛

‹

‹

‹

‹

‚

, (3.7)

and then investigate its asymptotic justification.

However, the parameters a1, a2, ρ1, ρ2 are usually unknown and need to be estimated.

In addition, it turns out that the weights pω1, ω2, ω3q are invariant to the scale normaliza-

tion of pb1, b2, b3q, and thus, pa1, a2q. Therefore, to construct the UMPU test, it suffices to

consistently estimate α1 “ a1{
a

a21 ` a22 and α2 “ a2{
a

a21 ` a22 along with ρ1 and ρ2.

Given the consistent estimators pα̂1, α̂2, ρ̂1, ρ̂2q for pα1, α2, ρ1, ρ2q specified in Section 4.1,

we then implement the feasible version of the combination test:

ϕ˚
n “ 1

␣

pω̂1T pβ0q ` ω̂2LMpβ0q ` ω̂3ARq
2

ě Cα

(

, (3.8)

where

¨

˚

˚

˚

˚

˝

ω̂1

ω̂2

ω̂3

˛

‹

‹

‹

‹

‚

“
1

b

b̂21 ` b̂22 ` b̂23

ˆ

¨

˚

˚

˚

˚

˝

1 ρ̂1 0

ρ̂1 1 ρ̂2

0 ρ̂2 1

˛

‹

‹

‹

‹

‚

´1{2¨

˚

˚

˚

˚

˝

b̂1

b̂2

b̂3

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

b̂1

b̂2

b̂3

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1 ρ̂1 0

ρ̂1 1 ρ̂2

0 ρ̂2 1

˛

‹

‹

‹

‹

‚

´1{2¨

˚

˚

˚

˚

˝

α̂1

α̂2

0

˛

‹

‹

‹

‹

‚

.

4 Large-Sample Theory

In this section, we investigate the asymptotic behavior of our combination test. We begin

by stating and discussing general assumptions about the data-generating process and on the

identification strength of both the low-dimensional and many IVs. We then establish the

asymptotic efficiency properties of the combination test and, finally, compare its efficiency

to that of the conventional Wald test based solely on low-dimensional IVs via the limiting
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length ratio of their confidence intervals.

4.1 General Assumptions

As in Chao et al. (2012), we treat Z̃ and W as fixed. This is equivalent to treating them

as random and repeating all the analyses in the paper by conditioning on them. For the

data-generating process, we impose the following assumptions.

Assumption 1. The following conditions hold when n is sufficiently large:

1. maxiPIg ,gPrGs Epẽ4i,g ` Ṽ 4
i,gq ď C ă 8;

2. max1ďgďG ng ď C ă 8;

3. Let

Ωg “ E

»

—

–

¨

˚

˝

ẽrgsẽ
J
rgs

ẽrgsṼ
J

rgs

Ṽrgsẽ
J
rgs

ṼrgsṼ
J

rgs

˛

‹

‚

fi

ffi

fl

, 1 ď g ď G,

then

0 ă
1

C
ď min

1ďgďG
λmin pΩgq ď max

1ďgďG
λmax pΩgq ď C ă 8;

4.

0 ă
1

C
ď λmin

¨

˝

1

n

ÿ

iPIg ,gPrGs

zi,gz
J
i,g

˛

‚ď λmax

¨

˝

1

n

ÿ

iPIg ,gPrGs

zi,gz
J
i,g

˛

‚ď C ă 8,

0 ă
1

C
ď λmin

¨

˝

1

n

ÿ

iPIg ,gPrGs

Wi,gW
J
i,g

˛

‚ď λmax

¨

˝

1

n

ÿ

iPIg ,gPrGs

Wi,gW
J
i,g

˛

‚ď C ă 8,

and

max
iPIg ,gPrGs

!ˇ

ˇ

ˇ
Π̃i,g

ˇ

ˇ

ˇ
` |Πi,g|

)

ď C ă 8, max
iPIg ,gPrGs

␣

}zi,g}2 ` }Wi,g}2

(

“ op
?
nq.
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Remark 4.1. Assumption 1.1 is a standard condition on the moments of error terms. As-

sumption 1.2 restricts the cluster size to be bounded, which incorporates cross-sectional

and short-panel data structures. It is also possible to extend our analysis to the case with

divergent cluster sizes, especially when the within-cluster dependence is weak. However,

when the cluster size is allowed to diverge, and there is strong within-cluster dependence,

the convergence rates of various IV estimators depend on the identification strength, the

within-cluster dependence, the cluster sizes, and the number of clusters in a complicated

way. We leave the investigation in this direction for future research. Assumption 1.3 ensures

that the error covariance matrix is non-singular for each cluster. Finally, Assumption 1.4 is

a mild condition for the design matrix.

For the low-dimensional IVs, we focus on the case of strong identification strength. We

investigate the case in which the low-dimensional IVs have weak identification strength in

Supplementary Appendix A, and show that, under certain conditions, when the many-IV

has strong identification, our optimal combination test still asymptotically controls size. The

cluster-robust variance estimator pΦ1 for the Wald statistic is defined as

pΦ1 “ pXJzÂnz
JXq

´1
pXJzÂnΩ̂Ânz

JXqpXJzÂnz
JXq

´1, and

Ω̂ “
ÿ

gPrGs

`

zJ
rgsêrgs

˘ `

zJ
rgsêrgs

˘J
.

The initial estimator 9Φ1 for Φ1 used in the computation of β̂ is defined in the same way

as pΦ1, except that êrgs “ Yrgs ´ Xrgsβ̂ is replaced by 9ergs “ Yrgs ´ Xrgsβ̂1.

We make the following assumptions regarding the inference with low-dimensional IVs.

Assumption 2. The following conditions hold almost surely:

1. There exists a sequence of non-random positive definite matrices An such that

A´1{2
n ÂnA

´1{2
n

p
ÝÑ Idz ,
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and λmaxpAnq{λminpAnq ď C ă 8 for all n large enough;

2. Let rn “
›

›zJΠ
›

›

2
, then

?
n{rn Ñ 0.

Remark 4.2. Assumption 2.1 states that the weighing matrix Ân converges in probability

to some non-random positive definite matrix, which is standard in the GMM setup. As-

sumption 2.2 ensures that zJΠ, the deterministic part of zJX, dominates zJV , the random

part of zJX, and is therefore the key condition for the consistency of β̂1 for β (i.e., the

low-dimensional IVs provide strong identification).

We do not require the identification strength provided by the many IVs to be strong, in

the sense that ΠJΠ{
?
K Ñ 8 (e.g., see Mikusheva and Sun (2022)). In Section 4.2 below,

we show that the optimal combination test is adaptive to the identification strength provided

by the many IVs. In particular, it controls size asymptotically and has non-trivial power

even when β̂2 is inconsistent.

If the many-IV identification is strong, similar to Chao et al. (2012), we can show that

the asymptotic variance of β̂2 is

Φ2 “
`

ΠJ
pP ´ P̄ qΠ

˘´1
Σ
`

ΠJ
pP ´ P̄ qΠ

˘´1
,

where

Σ “ E

¨

˝

ÿ

g,hPrGs2,g‰h

ΠJ
rgsPrg,hsp

ÿ

kPrGs

MW,rh,ksẽrksq

˛

‚

2

` E

¨

˝

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚

2

is the asymptotic variance of XJpP ´ P̄ qe. A natural estimator for Φ2 is

pΦ2 “
`

XJ
pP ´ P̄ qX

˘´1
Σ̂
`

XJ
pP ´ P̄ qX

˘´1
,

where Σ̂ is a consistent estimator of Σ. Such an estimator is proposed in Chao et al.

(2012), but here we also need to account for the fact that W has already been partialled
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out, whereas in Chao et al. (2012) the coefficients for W are also estimated. Therefore,

some adjustments are required, as in Matsushita and Otsu (2024). For that purpose, define

Q “ MW pP ´ P̄ qMW , and let Q̄ be the block diagonal matrix corresponding to Q such that

the g-th block on its diagonal is Qrg,gs. Our variance estimator is similar to the one in Chao

et al. (2012) but with P ´ P̄ replaced by Q ´ Q̄, i.e.,

Σ̂ “
ÿ

gPrGs

¨

˝

ÿ

hPrGs,h‰g

X̃J
rhsQrh,gsêrgs

˛

‚

2

`
ÿ

g,hPrGs2,g‰h

´

X̃J
rgsQrg,hsêrhs

¯´

X̃J
rhsQrh,gsêrgs

¯

.

The initial estimator :Φ2 for Φ2 used in the computation of β̂ is defined in the same way

as pΦ2, except that êrgs “ Yrgs ´ Xrgsβ̂ is replaced by :ergs “ Yrgs ´ Xrgsβ̂2.

Last, for the jackknife AR statistic, the variance estimator is given by

Υ̂ “ 2
ÿ

g,hPrGs2,g‰h

`

êJ
rgsPrg,hsêrhs

˘2
,

which is consistent for the asymptotic variance of êJpP ´ P̄ qê, given by

Υ “ E

¨

˝

ÿ

g,hPrGs2,g‰h

ẽJ
rgsPrg,hsẽrhs

˛

‚

2

.

We make the following assumptions regarding the inference with many IVs.

Assumption 3. The following conditions hold:

1. K Ñ 8 as n Ñ 8 such that lim supnÑ8 K{n ď C ă 1;

2. rankpP q “ K and max1ďgďG λmax

`

Prg,gs

˘

ď C ă 1;

3. Let Π̂ “ MW pP ´ P̄ qΠ “ QΠ̃ and Π̄ “ pQ ´ Q̄qΠ̃, then

max
iPIg ,gPrGs

!
ˇ

ˇ

ˇ
Π̂i,g

ˇ

ˇ

ˇ
`
ˇ

ˇΠ̄i,g

ˇ

ˇ

)

ď C ă 8,

22



and

Π̃JΠ̃ ď CΠJΠ, Π̂JΠ̂ ě ΠJΠ{C, ΠJ
pP ´ P̄ qΠ ě ΠJΠ{C,

when n is large enough;

4. For all sufficiently large n,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

corr

¨

˝

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsṼrhs,

ÿ

g,hPrGs2,g‰h

Ṽ J
rgsPrg,hsẽrhs

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C ă 1.

Remark 4.3. Assumption 3.1 allows the dimension of many IVs K to be proportional to the

sample size n. Assumption 3.2 is similar to the standard condition that max1ďiďn Pii ď C ă 1

in the literature on many instruments, and the restriction that rankpP q “ K will exclude

redundant columns from Z. Assumption 3.3 holds in general if Π̃JΠ̃, Π1Π and Π1PΠ are

of the same order. Assumption 3.4 excludes perfect correlations between the two quadratic

forms. Note that we do not put any restriction on the identification strength of many IVs,

i.e., we allow ΠJΠ{
?
K to be bounded.

4.2 Asymptotic Efficiency Properties of Combination Test

We now investigate the asymptotical properties of ϕ˚
n when the low-dimensional IVs are

strong, in the sense that Assumption 2 holds. This allows us to define the local alternative

according to the asymptotic variance of β̂1 and β̂2 and the limiting covariance structure of

the component statistics, from which the joint limiting distribution of pT pβ0q, LMpβ0q, ARq

can be derived. The results with weak low-dimensional IVs are given in Supplementary

Appendix A. The formal regularity condition is stated as follows.
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Assumption 4. The following limits exist

ρ1 “ lim
nÑ8

1
?
ΨΣ

ÿ

gPrGs

E
”´

Π́J
rgsẽrgs

¯´

Π̂J
rgsẽrgs

¯ı

,

ρ2 “ lim
nÑ8

2
?
ΣΥ

ÿ

g,hPrGs2,g‰h

E
”´

Ṽ J
rgsPrg,hsẽrhs

¯

`

ẽJ
rgsPrg,hsẽrhs

˘

ı

,

where Π́ “ zAnz
JX and ρ21 ` ρ22 ă 1.

Remark 4.4. The asymptotic expansion of LMpβ0q includes both linear and quadratic

functions of the errors pẽ, Ṽ q, whereas AR depends only on a quadratic function of ẽ. The

linear and quadratic components are asymptotically normal and uncorrelated, and therefore

asymptotically independent. Since the Wald statistic T pβ0q involves only linear functions of

the errors, it is asymptotically uncorrelated with AR. Finally, ρ1 and ρ2 denote, respectively,

the correlation between the linear components of T pβ0q and LMpβ0q, and the correlation

between the quadratic components of LMpβ0q and AR.

The following theorem establishes the joint distribution of the three test statistics above

under the local alternative.

Theorem 4.1. Under Assumptions 1–4, suppose that there exists a deterministic sequence

dn Ó 0 such that dnΦ
´1{2
1 Ñ a1, dnΦ

´1{2
2 Ñ a2, and β ´ β0 “ δdn for some fixed δ, where

a1 ě 0, a2 ě 0 and a21 ` a22 ą 0. Then we have the joint limiting distribution (3.5) for

pT pβ0q, LMpβ0q, ARq
1.

Remark 4.5. The existence of the sequence dn is ensured by Assumption 2. In particular,

we may define dn “ min
´

Φ
1{2
1 , Φ

1{2
2

¯

. Under the strong identification of the low-dimensional

IVs in Assumption 2.2, we have Φ
1{2
1 “ O

´?
n

rn

¯

“ op1q, which immediately implies dn “

min
´

Φ
1{2
1 , Φ

1{2
2

¯

“ op1q, regardless of the order of Φ2.

Remark 4.6. The joint normality established in Theorem 4.1 holds even when the many-IV

specification is weakly identified in the sense of Mikusheva and Sun (2022), that is, when
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ΠJΠ{
?
K is bounded. This result follows from two observations. First, the estimator β̂ used

to construct the variance estimators Φ̂2 and Υ̂ for the LM and AR statistics remains consis-

tent due to the strong identification of the low-dimensional IVs and the double robustness

of β̂. Second, under weak many-IV identification, the quadratic components of the LM and

AR statistics dominate their asymptotic behavior and yield asymptotic normality as long as

K Ñ 8. In this regime, we have ρ1 “ 0, dn “
?
n{rn, and Φ´1

2 “ Op1q, which further imply

that a2 “ 0 under Assumption 2.2.

To implement the optimal test ϕ˚
n defined in (3.8), we still need to estimate a1, a2, ρ1,

and ρ2. It turns out to be easier to estimate α1 “ a1{
a

a21 ` a22 and α2 “ a2{
a

a21 ` a22, and

we propose the following estimators

α̂1 “

b

pΦ2
b

pΦ1 ` pΦ2

, α̂2 “

b

pΦ1
b

pΦ1 ` pΦ2

.

In addition, let X̂ “ MW pP ´P̄ qX and X́ “ zÂnz
JX, for ρ1 and ρ2 we propose the following

estimators

ρ̂1 “
1

a

Ψ̂Σ̂

ÿ

gPrGs

”´

X́J
rgsêrgs

¯´

X̂J
rgsêrgs

¯ı

,

ρ̂2 “
2

a

Σ̂Υ̂

ÿ

g,hPrGs2,g‰h

“`

XJ
rgsPrg,hsêrhs

˘ `

êJ
rgsPrg,hsêrhs

˘‰

.

By combining Proposition 3.1 and Theorem 4.1, and invoking the approach developed

by Müller (2011), we obtain a precise sense of asymptotic optimality for our proposed test

ϕ˚
n, which is formalized in the following Theorem 4.2.

Theorem 4.2. Let M denote the set of data generating processes m that satisfy the con-

ditions of Theorem 4.1 pointwise for all δ P ℜ. Suppose that one wants to test H0 : δ “ 0
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against H1 : δ ‰ 0. Then, for the class C of tests ϕn satisfying that

lim
nÑ8

E rϕns ď α for all m P M, δ “ 0, (4.1)

lim inf
nÑ8

E rϕns ě α for all m P M, δ ‰ 0, (4.2)

we have ϕ˚
n P C, and, for any δ1 ‰ 0 and any ϕn P C,

lim
nÑ8

E rϕns ď lim
nÑ8

E rϕ˚
ns for all m P M, δ “ δ1. (4.3)

Moreover, for the test ϕ̃n “ 1 tT 2pβ0q ě Cαu, we have ϕ̃n P C, and for any δ and all m P M,

lim
nÑ8

E
”

ϕ̃n

ı

“ lim
nÑ8

E rϕ˚
ns if and only if a2 “ ρ1a1.

Remark 4.7. Theorem 4.2 shows that, under local alternatives, ϕ˚
n attains the asymptotic

efficiency bound within the class of tests that remain asymptotically unbiased and valid for

all data generating processes inducing the same weak limit for pT pβ0q, LMpβ0q, ARq1 as in

Theorem 4.1. This class of tests includes, in particular, the Wald and LM tests based solely

on the low-dimensional and many-IVs statistics, respectively. It also includes the HLIM and

HFUL tests of Hausman et al. (2012), both of which are asymptotically equivalent to linear

combinations of the LM and AR tests.

However, our optimal test ϕ˚
n does not dominate tests that cannot be expressed directly

as functions of pT pβ0q, LMpβ0q, ARq1, such as the sup-score test of Belloni et al. (2012) and

the ridge-regularized AR test of Dov̀ı, Kock, and Mavroeidis (2024). Indeed, it is possible

to construct data generating processes under which either the optimal combination test, the

sup-score test, or the ridge-regularized AR test achieves the highest power. We establish this

notion of optimality primarily to provide guidance for constructing tests that improve upon

the conventional Wald test, rather than to identify a globally optimal procedure. That said,
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one could potentially combine our ϕ˚
n test with the sup-score test, in the spirit of Navjeevan

(2024), to obtain more powerful inference.

Remark 4.8. Theorem 4.2 also clarifies the necessary and sufficient condition under which

the combination test does not deliver a strict power gain over the Wald test, namely a2 “

ρ1a1. Recall that a1 and a2 represent the orders of the concentration parameters for the low-

dimensional and many IVs, respectively. As will be shown below, even when we allow either

of them to be zero—thereby covering situations where one IV estimator dominates the other

in terms of convergence rate—the condition (a2 “ ρ1a1) is still seldom met. Put differently,

one should generally anticipate strictly powerful inference when using our combination test.

In particular, when a1 “ 0 and a2 ą 0, corresponding to the case when the identification

strength of many IVs is larger than that of the low-dimensional IVs, we obtain a strict power

improvement for all values of ρ1 and ρ2 satisfying ρ21 ` ρ22 ă 1. Conversely, when a1 ą 0

and a2 “ 0, meaning that low-dimensional IVs provide stronger identification than many

IVs, we still achieve a strict power gain as long as ρ1 ‰ 0. When a1 ą 0 and a2 ą 0, that

is, when the two sets of IVs have identification strengths of the same order, strict power

improvement is ensured, provided that ρ1 ‰ a2{a1. Indeed, at ρ1 “ a2{a1, the sufficient

statistic for δ derived from the joint limiting distribution of the three component statistics

(cf. (3.5)) becomes independent of the limiting Gaussian observations associated with the

LM and AR statistics, so it is not surprising that combining the Wald statistic with them

does not yield a more powerful inference.

Remark 4.9. As long as the low-dimensional IVs are strongly identified, the optimal combi-

nation test ϕ˚
n does not lose asymptotic power for any degree of identification strength of the

many IVs. In this sense, the efficiency gains delivered by the combination test are essentially

a “free lunch.” Under local alternatives, the weak convergence result in Theorem 4.1 holds

uniformly, regardless of whether the many IVs are strong or weak. In particular, when the

many IVs are weak so that a2 “ ρ1 “ 0 (as the quadratic term in LMpβ0q dominates the

linear term), the second part of Theorem 4.2 shows that the combination test asymptotically
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reduces to the Wald test, implying no efficiency loss from combining. Moreover, as shown

below, the combination test remains consistent irrespective of the identification strength of

the many IVs.

Interestingly, in the alternative setting where the low-dimensional IVs are weakly iden-

tified but the many IVs are strongly identified—so that the Wald test becomes invalid—our

combination test continues to be asymptotically valid, provided certain suitably adapted,

yet still mild conditions hold. We relegate the technical discussions of these scenarios to

Supplementary Appendix A.

Finally, for any fixed alternative, both T pβ0q and LMpβ0q are consistent and, by con-

struction, avoid the issue of non-monotonic power when their corresponding set of IVs is

strong. Hence, it is reasonable to anticipate that our combined test will retain these desir-

able properties, a result that we formalize in the theorem below. However, we emphasize

once more that these results remain valid regardless of the strength of the many IVs.

Theorem 4.3. Suppose that Assumptions 1-4 hold. Then, under β ´ β0 “ δ for some fixed

δ ‰ 0, we have limnÑ8 E rϕ˚
ns “ 1.

4.3 Quantifying Efficiency Improvement in Large Samples

We measure the efficiency improvement of the combination test over the conventional Wald

test that uses only low-dimensional IVs by the percentage reduction in the asymptotic length

of the resulting confidence interval. Recall from Remark 4.9 that, under weak many instru-

ments, the combination test is asymptotically equivalent to the Wald test. Consequently, the

associated confidence interval takes the usual “estimator plus and minus a standard error

times a critical value” form:
“

β̂1 ´

b

pΦ1 ˆ
?
Cα, β̂1 `

b

pΦ1 ˆ
?
Cα

‰

, where β̂1 and Φ̂1 are as

defined above, and
?
Cα is the standard normal critical value. In this case, the asymptotic

efficiency gain is zero.

When the many IVs provide strong identification, the confidence interval associated with
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our combination test can also be expressed in the familiar “estimator plus and minus a stan-

dard error times a critical value” form. To see this, observe that under strong identification

for many IVs, the component LM statistic can be represented as follows:

LMpβ0q “
XJpP ´ P̄ qepβ0q

a

Σ̂
“
β̂2 ´ β0
b

pΦ2

` opp1q,

where the oP p1q term comes from the fact that under strong identification,

signpXJ
pP ´ P̄ qXq

p
ÝÑ 1.

Inserting this into (3.8) gives the resulting form of our combination test

ϕ˚
n “ 1

$

&

%

¨

˝ω̂1
β̂1 ´ β0
b

pΦ1

` ω̂2
β̂2 ´ β0
b

pΦ2

` ω̂2opp1q ` ω̂3AR

˛

‚

2

ě Cα

,

.

-

.

The resulting confidence interval is asymptotically equivalent to

CI˚
“

»

—

—

–

β̂˚
´

1
ˆ

ω̂1{

b

pΦ1 ` ω̂2{

b

pΦ2

˙

a

Cα, β̂
˚

`
1

ˆ

ω̂1{

b

pΦ1 ` ω̂2{

b

pΦ2

˙

a

Cα

fi

ffi

ffi

fl

, (4.4)

where β̂˚ is a combined estimator of β,

β̂˚
“

ω̂1{

b

pΦ1
ˆ

ω̂1{

b

pΦ1 ` ω̂2{

b

pΦ2

˙ β̂1 `
ω̂2{

b

pΦ2
ˆ

ω̂1{

b

pΦ1 ` ω̂2{

b

pΦ2

˙ β̂2 `
ω̂3AR

ˆ

ω̂1{

b

pΦ1 ` ω̂2{

b

pΦ2

˙ .

The intuition behind the combined estimator is fundamentally efficiency-driven. First,

pΦ1 and pΦ2 estimate the asymptotic variances of β̂1 and β̂2, respectively, so for given weights

pω̂1, ω̂2q the combined estimator β̂˚ assigns greater weight to the estimator with the faster

convergence rate, or equivalently, the smaller asymptotic variance. Second, although the AR
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statistic is asymptotically centered at zero and therefore does not affect the location of the

combined estimator, its correlation with the many-IV estimator β̂2 allows it to reduce the

combined estimator’s variance. This mechanism parallels the construction of the HLIML

and HFUL estimators in Hausman et al. (2012). Third, the estimated weights pω̂1, ω̂2, ω̂3q

are consistent for the population weights pω1, ω2, ω3q in (3.7) associated with the UMPU test.

Finally, the optimal weights defined in (3.7) solve the following optimization problem:

min
ω1,ω2,ω3

1

pa1ω1 ` a2ω2q
2

s.t. pω1, ω2, ω3q

¨

˚

˚

˚

˚

˝

1 ρ1 0

ρ1 1 ρ2

0 ρ2 1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

ω1

ω2

ω3

˛

‹

‹

‹

‹

‚

“ 1.

The quadratic constraint ensures that CI˚ attains the correct asymptotic coverage, while

the objective corresponds to the asymptotic variance of the combined estimator β̂˚, since

1

d2n
`

ω1{
?
Φ1 ` ω2{

?
Φ2

˘2 Ñ
1

pa1ω1 ` a2ω2q2
.

Thus, the optimal weights in (3.7), originally motivated by the UMPU testing problem,

also yield an optimally efficient combined estimator of pβ̂1, β̂2, ARq that attains the minimal

asymptotic variance.

A direct implication of the confidence interval in (4.4) is that, asymptotically, the per-

centage reduction in its length relative to the confidence interval based on the conventional

Wald test can be derived analytically as follows,

lim
nÑ8

1 ´

1{

ˆ

ω̂1{

b

pΦ1 ` ω̂2{

b

pΦ2

˙

b

pΦ1

“1 ´

d

p1 ´ ρ21 ´ ρ22qa
2
1

p1 ´ ρ22qa21 ´ 2ρ1a1a2 ` a22
(4.5)

ě1 ´

d

p1 ´ ρ21qa
2
1

a21 ´ 2ρ1a1a2 ` a22
“ 1 ´

d

p1 ´ ρ21q

p1 ´ ρ21q ` pρ1 ´ a2{a1q2
. (4.6)
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As equation (4.5) shows, the efficiency gain is primarily determined by the identification

strength of the low-dimensional and many IVs, as well as by the limiting correlations be-

tween the component Wald and LM statistics and between the LM and AR statistics. In

particular, consistent with Theorem 4.2, when a2 “ ρ1a1, the combination test ϕ˚
n does

not yield efficiency improvement, and its confidence interval is asymptotically of the same

length as that based on ϕ̃n. This also turns out to encompass the weak many-IV case, where

ρ1 “ a2 “ 0. On the other hand, whenever a2 ‰ ρ1a1, the resulting confidence interval is

strictly shorter, implying improved efficiency. Moreover, the efficiency gain measure (4.5)

increases monotonically in the mangnitude of the correlation parameter ρ2, which implies

the lower bound in (4.6). Figure 1 depicts this bound as a function of a2{a1—the ratio of the

standard deviations of β̂1 and β̂2—for various values of ρ1. This leads to the practical rule

of thumb, as discussed in Section 2: for empirically plausible values of ρ1 (between ´0.7 and

0.7), whenever the ratio of already reported standard errors

b

pΦ1 and

b

pΦ2 exceeds 1.05,

the associated confidence interval shrinks by at least 10%.

5 Simulation Study

In this section, we perform simulations to evaluate the finite-sample behavior of our combi-

nation test. In particular, we consider the following model with clustered data,

Ȳi,g “ X̄i,gβ ` W̄J
i,gγ ` αg ` ēi,g,

X̄i,g “ Z̄J
i,gπ ` W̄J

i,gτ ` ξg ` V̄i,g,

where αg and ξg are cluster-level fixed effects. These fixed effects are generated by αg “ u1g`

g{G and ξg “ u2g ` g{G, g “ 1, . . . , G, where u1g and u2g are independent standard normal

random variables. By demeaning at the cluster level, we partial out the fixed effects and

obtain Ỹi,g, X̃i,g, Wi,g, Z̃i,g, Ṽi,g, and ẽi,g, following the notation in Section 3.1. The control

variables in W̄i,g are generated by the standard normal distribution, and the dimension of
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W̄ is fixed at dw “ 10. The instruments in Z̄i,g are normally distributed with mean 0 and

cluster-level dependence: within each cluster g, the covariance matrix is given by

Ω1g “

»

—

—

—

—

—

—

—

–

1 θ1 ¨ ¨ ¨ θ1

θ1 1 ¨ ¨ ¨ θ1
...

...
. . .

...

θ1 θ1 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ngˆng

, g “ 1, . . . , G,

and between clusters these instruments are independent of each other; we set θ1 “ 0.5 in our

simulations. Finally, to obtain an arguably complex error structure, we first generate éi,g “

ρεi,g `
a

1 ´ ρ2σi,gvg and V́i,g “ ρηi,g `
a

1 ´ ρ2σi,gvg, where σi,g “

b

`

0.2 ` pW̄J
i,gτq2

˘

{2.4.

Here, εi,g, ηi,g, and vg are mutually independent standard normal random variables, ρ governs

the degree of endogeneity, τ is specified below, and we fix ρ “ 0.5 in all simulations. Next,

within each cluster, we premultiply the vectors éi,g and V́i,g by

Ω2g “

»

—

—

—

—

—

—

—

–

1 0 ¨ ¨ ¨ 0

θ2 1 ¨ ¨ ¨ 0

...
...

. . .
...

θni´1
2 θni´2

2 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ngˆng

, g “ 1, . . . , G,

thereby generating ēi,g and V̄i,g. In our simulations, we set θ2 “ 0.7.

For the parameters, we set β “ 0.3, γ “ τ “ p1{
?
dwqˆιdw , where ιdw is a dw ˆ1 vector of

ones. We specify geometrically decaying coefficients of IVs as π “
`

ϕ0, ϕ1, . . . , ϕK´1
˘

, where

K denotes the number of (many) base IVs and ϕ controls the relative weight assigned to

each instrument. It is noted that ϕ “ 0 represents the case in which only the first instrument

has identification strength, while ϕ “ 1 corresponds to the case in which each instrument

has the same identification strength. We further normalize π to have }π}2 “

b

ψ
?
K{n,

where ψ controls the identification strength of the many IVs. The one-dimensional IV
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is constructed by taking the average of the many IVs; as ϕ approaches one, the identi-

fication strength of the low-dimensional IV becomes stronger since it is closer to the op-

timal instrument. We set the sample size at n “ 2,000 and the number of clusters at

G “ 500, and then generate heterogeneous cluster sizes following a procedure similar to that

in Djogbenou, MacKinnon, and Nielsen (2019). Specifically, for g “ 1, ¨ ¨ ¨ , G ´ 1, we set

ng “ max
!

1, n expp2g{Gq{p1 `
řG´1

g“1 expp2g{Gqq

)

and then the size of the last cluster as

nG “ max
!

1, n ´
řG´1

g“1 ng

)

. For the dimension of Z̄, we consider K “ 100 and K “ 500,

respectively. All the results below are based on 5, 000 simulations.

Figure 3 displays the power curves for our combination test ϕ˚
n along with those for the

component Wald and jackknife LM tests, at different values of K (the dimension of the many

IVs), ψ (which governs the identification strength of the many IVs), and ϕ (which controls

the identification strength of the one-dimensional IV relative to the many IVs). We identified

three main observations, each of which aligns with our large-sample theory. First, in every

scenario, the combination test ϕ˚
n attains the correct size and is more powerful than each of

the other two tests. In particular, as shown in Panel C, the power curve ϕ˚
n is never dominated

by that of the Wald test, regardless of the strength of the many IVs, thereby underscoring

the “free lunch” efficiency gains delivered by our combination test. Second, within Panels

A and B of Figure 3, we observe that for fixed K and ψ, the power improvement of ϕ˚
n over

the Wald test becomes more substantial as the identification strength of the one-dimensional

IV weakens relative to that of the many IVs (i.e. as ϕ decreases). This is reflected in the

widening gap between the power curves of ϕ˚
n and the Wald test. It emphasizes how many

IVs-based LM and AR statistics contribute to the power enhancement. Third, in contrast

to the cases in which the one-dimensional IV dominates many IVs in strength (first figure

in Panel A or B) and the power curve of ϕ˚
n coincides with that of the Wald test, noticeable

gaps persist between the power curves of ϕ˚
n and the LM test in the flipped cases (second

and third figures in Panel A or B). These gaps highlight how the AR component contributes

to power enhancement through its correlation with the LM statistic.
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6 Conclusion

This paper introduces a simple inference approach to improve conventionally reported esti-

mation and inference results in instrumental variables regressions, based on low-dimensional

instruments (such as aggregated shift-share IVs) and their underlying full set of (many) base

instruments. The proposed combination inference procedure synthesizes three core statis-

tics: the cluster-robust Wald statistic derived from low-dimensional IVs, and the leave-one-

cluster-out Lagrangian Multiplier (LM) and Anderson-Rubin (AR) statistics derived from

many base IVs.

Under strong identification of the low-dimensional instruments, we show that the com-

ponent statistics are jointly asymptotically normal. The resulting combination test is con-

structed as an optimal linear combination of the three core statistics, based on an optimal

testing result in the associated limiting experiment. In this way, the test achieves a form of

asymptotic optimality in the sense of Müller (2011). A defining feature of this procedure is its

adaptability; the test automatically weights the component statistics according to their rel-

ative identification strengths and dependence structure. Consequently, the procedure yields

a “free lunch” in terms of efficiency: it is never asymptotically less powerful than standard

Wald inference and, in most cases, produces strictly shorter confidence intervals. Crucially,

the test adapts to the strength of the many instruments and reduces to conventional Wald

inference when the many IVs are only weakly identified.

The simulation results, together with an empirical illustration based on Card (2009),

confirm that the resulting efficiency gains can be quantitatively and empirically relevant in

practice. Because the procedure is straightforward to implement and requires little beyond

the standard reported outputs, we recommend the routine use of the combination test in

empirical IV applications. We leave to future research the extension of our results to settings

with many control variables, the consideration of alternative bootstrap procedures, and

potential combinations with, for example, the sup-score test to further enhance power.
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Figure 1: Theoretical lower bounds for percentage reduction in confidence interval length.

Notes: This figure plots the lower bound of the efficiency gain, given by (4.6), as a function of the standard

deviation ratio, σpβ̂1q{σpβ̂2q, for various values of ρ1, the limiting correlation between the Wald and LM

statistics. The horizontal axis is the ratio of standard deviation of β̂1, the standard GMM estimator using
low-dimensional IVs, and standard deviation of β̂2, the leave-one-cluster-out estimator using the many base
IVs. The vertical axis is the reduction in the length of confidence interval in percentage points.
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College Equivalent Workers High school Equivalent Workers
Yes No Yes No

ρ̂1 0.588 0.446 0.408 0.576
ρ̂2 0.103 0.120 0.129 0.165

σ̂pβ̂1q{σ̂pβ̂2q 0.931 1.242 0.700 0.708

β̂1 -0.078 -0.080 -0.037 -0.024
Wald CI (-0.103, -0.053) (-0.110, -0.049) (-0.051, -0.023) (-0.037, -0.011)

β̂2 -0.066 -0.058 -0.043 -0.030
LM CI (-0.093, -0.039) (-0.082, -0.033) (-0.063, -0.024) (-0.048, -0.012)

β̂˚ -0.072 -0.064 -0.039 -0.025
Comb. CI (-0.095, -0.049) (-0.087, -0.041) (-0.052, -0.026) (-0.038, -0.013)

Table 1: Point estimates and confidence intervals: immigrant enclave.

Notes: This table reports the estimation and inference results for the immigrant enclave example using the
Card (2009) dataset, shown separately for college equivalent workers and high school equivalent workers.
Columns with “Yes” contain city-level controls, while columns with “No” do not. The point estimates are
obtained from the standard two-stage least squares (TSLS) estimator with the Bartik instrument, β̂1, and, in

addition, from the leave-one-out estimator, β̂2, which makes use of all base IVs. Wald CI and LM CI denote
the confidence intervals based on β̂1 and β̂2, respectively. The estimator β̂˚ is the combined estimator for
β, defined in Section 4.3. It is essentially the midpoint of the confidence interval in (4.4), which is obtained
from our combination test and labeled as “Comb. CI” in the table. In addition, ρ̂1 and ρ̂2 denote estimates
of the asymptotic correlation between the Wald and LM statistics, and between the LM and AR statistics,
respectively. Finally, σ̂pβ̂1q{σ̂pβ̂2q denotes the ratio of standard errors of β̂1 and β̂2. All displayed numbers
are rounded to three decimal places.
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Figure 2: Realized percentage reduction in confidence interval length: immigrant enclave.

Notes: This figure shows, for each specification in the immigrant enclave example, the observed percentage
decrease in confidence interval length (Combined CI versus Wald CI, as in Table 1, and indicated by “o”

in figure legends) plotted as a point against the standard error ratio (σ̂pβ̂1q{σ̂pβ̂2q in Table 1). Also shown
is the theoretical lower bound for the reduction (indicated by “p” in figure legends), analogous to Figure
1, but now computed using the specification-specific estimate ρ̂1, as reported in Table 1. Here, “college”
refers to the specifications for college equivalent workers, and “hs” refers to the specifications for high school
equivalent workers. “c” indicates that controls are included, whereas “nc” indicates that controls are not
included. The horizontal axis is the ratio of standard deviations (errors) of β̂1 and β̂2. The vertical axis
is the reduction in the length of confidence interval in percentage points. As a final remark, note that the
actual numerical values of the relevant quantities in Table 1, rather than the rounded values shown there,
are used to produce Figure 2.
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Panel A: K “ 100 and ψ “ 30

Panel B: K “ 500 and ψ “ 30

Panel C: K “ 500 and ϕ “ 1

Figure 3: Power curves of the combination, Wald, and jackknife LM tests.

Notes: This figure displays the power curves for our combination test ϕ˚
n along with those for the component

Wald and jackknife LM tests, at different values of K (the dimension of the many IVs), ψ (which governs
the identification strength of the many IVs), and ϕ (which controls the identification strength of the one-
dimensional IV relative to the many IVs). The horizontal axis represents the deviations in the parameter of
interest from the maintained hypothesis, that is, we are interested in testing H0 : β “ β0 against H1 : β ‰ β0,
and δ “ β ´ β0. See Section 5 for a detailed description of the simulation setup. All results are based on
5, 000 simulations.
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